首页|深层特征引导的多尺度上下文聚合图像变化检测网络

深层特征引导的多尺度上下文聚合图像变化检测网络

扫码查看
多尺度融合方法在图像变化检测领域中得到广泛研究,但由于不同尺度的特征之间存在不平衡,直接进行特征融合无法精确地检测目标变化,特别是在复杂场景下目标变化的检测仍然存在漏检和误检的问题.本研究提出一种深层特征引导的多尺度上下文聚合网络(DF-MCANet)进行变化检测任务,通过深层特征引导不同阶段的特征融合,提高网络对于不同尺度目标的理解能力.该网络包含特征融合模块(FFM)和特征矫正模块(FCM)两个关键模块,FFM结合上下文特征进行变化信息的提取和增强,FCM利用深层语义特征引导FFM提取各阶段特征,进行语义、细节以及上下文表示的融合.实验结果表明,DF-MCANet相较于目前最优的模型A2Net,F1 指标在CDD数据集提高0.73%,在DSIFN数据集上提高1.43%.
Deep feature-guided multi-scale context-aggregated image change detection network
Multi-scale fusion methods have been extensively studied in the field of image change detection,but direct feature fusion cannot accurately detect target changes due to the imbalance between features at different scales.The detection of target changes still suffers from missing and misdetection in complex scenes in particular.In this paper,a deep feature-guided multi-scale context aggregation network(DF-MCANet)was proposed for the change detection task,which improved the network's understanding of targets at different scales by guiding different stages of feature fusion through deep features.The network contained two key modules:feature fusion module(FFM)and feature correction module(FCM).The FFM,combined with contextual features,was used for the extraction and enhancement of change information and the FCM,utilizing deep semantic features,guided the features extracted by the FFM at various stages to perform the fusion of semantic,detailed,and contextual representations.The experimental results show that DF-MCANet improves the F1 metrics by 0.73%on the CDD dataset and 1.43%on the DSIFN dataset compared to the current optimal model A2Net.

change detectionmulti-scaledeep featurecontext-aggregatedremote sensing images

杨淑琪、李哲、刘国强、房胜、高云鹏

展开 >

山东科技大学 计算机科学与工程学院,山东 青岛 266590

变化检测 多尺度 深层特征 上下文聚合 遥感图像

国家自然科学基金项目山东省自然科学基金项目

42276185ZR2022MF325

2024

山东科技大学学报(自然科学版)
山东科技大学

山东科技大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.437
ISSN:1672-3767
年,卷(期):2024.43(4)