首页|基于深度学习自编码器的X波段雷达二维波浪场实时重构方法研究

基于深度学习自编码器的X波段雷达二维波浪场实时重构方法研究

扫码查看
X波段波浪雷达是一种具有广阔应用前景的海洋环境检测技术.目前,利用X波段波浪雷达提取波浪参数的方法已较为成熟,但尚无法重构和反演实时波浪场.该文提出了一种基于卷积自编码器的深度学习方法,实现了对X波段波浪雷达图像的反演,可以得到二维实时波浪场.该方法对5.5m≤Hs≤8.5m,3.5√Hs≤Tp ≤4.8√Hs(Hs为有义波高,Tp为谱峰周期)的JONSWAP谱波浪场进行反演的误差在7%以内,对含有噪声干扰的雷达图像和部分区域遮挡的雷达图像具有良好的恢复能力,展现出该方法对X波段波浪雷达图像反演二维波浪场的重要意义.
Research on Real-time Reconstruction Method of Two-dimensional Wave Field of X-band Radar Based on Deep Learning Autoencoder
X-band wave radar is a marine environment detection technology with broad application prospects.At present,the extraction of wave parameters using X-band wave radar is relatively mature,but it is not able to reconstruct and invert the wave field.In this paper,a deep learning method based on convolutional autoencoder is proposed to invert X-band wave radar images and obtain two-dimensional wave fields.The error of this method in inverting of JONSWAP spectral wave field with 5.5 m ≤ Hs ≤8.5 m,3.5√Hs ≤Tp ≤4.8√Hs(Hs is significant wave height and Tp is spectral peak period)using this method is within 7%,and this method has good recovery ability for radar images containing noise interference or partial occlusion.This method demonstrates the important significance of inverting two-dimensional wave fields from X-band wave radar images.

X-band wave radarWave field inversionConvolutionAutoencoderDeep learning

马子炜、郭孝先、卢文月、李欣

展开 >

上海交通大学海洋工程国家重点实验室,上海 200240

上海交通大学三亚崖州湾深海科技研究院,三亚 572000

X波段波浪雷达 波浪场反演 卷积 自编码器 深度学习

海南省自然科学基金青年项目山东省重点研发计划

5210N2762020CXGC010701

2024

水动力学研究与进展A辑
中国船舶科学研究中心

水动力学研究与进展A辑

CSTPCD北大核心
影响因子:0.594
ISSN:1000-4874
年,卷(期):2024.39(3)
  • 1