首页|基于KGWO-BP神经网络的水射流壁面剪切力预测方法研究

基于KGWO-BP神经网络的水射流壁面剪切力预测方法研究

扫码查看
超高压水射流作用于船体壁面的剪切力是反映除锈作业效率的一项关键指标,也是评估喷嘴内部结构参数合理性的重要依据.优化喷嘴的水动力性能涉及多个参数,若仅依赖CFD方法会带来高昂的计算成本.该文以常见的直锥型喷嘴为研究对象,综合利用CFD数值仿真和神经网络方法构建水射流性能预测模型,基于正交试验法则设定仿真算例,以靶面剪切力作为核心指标,获得喷嘴结构各参数对水射流性能影响的主次顺序,旨在为喷嘴的设计及结构参数的优化等提供参考依据.研究结果表明:通过正交试验分析得出的喷嘴四个内部参数中,出口段长度对水射流的性能影响最大;总结归纳可得出壁面剪切力较大时对应的内部最佳参数组合.该文提出的KGWO-BP模型预测精度高、泛化性能强,可以为直锥型喷嘴优化提供可靠的技术支持.
Prediction Method for Wall Shear Stress of Water Jet Based on KGWO-BP Neural Network
The wall shear stress of ultra-high-pressure water jet impinging on the ship hull can be regarded as an important indicator to reflect the working efficiency of rust removal operation,and it also acts as a crucial criterion to assess the reasonability of the internal structure parameters related of the nozzles.Several parameters should be considered when the hydrodynamic performance of nozzles is optimized.If only relying on CFD simulations,the computational consumption is too high.In this paper,the straight-cone nozzle is taken as the research object,a prediction model for water jet performance is established,by using CFD simulation and neural network modelling simultaneously.By means of adopting the orthogonal test rule to set simulation cases and regarding the wall shear stress of water jet on target surface as a core indicator,the primary and secondary effect sequence of the internal structure parameters of nozzle on the hydrodynamic performance of water jetting is obtained.It provides a reference for the shape lines design of nozzle,as well as for the optimization of the structure parameters.The results show that the length of the exit section has the greatest effect on the water-jet performance among the four internal structure parameters,and the optimal combination of those four parameters corresponding to the larger wall shear stress is also provided.The proposed KGWO-BP model can provide reliable technical support for the optimization of the straight-cone nozzle,because of its high prediction accuracy and high generalization performance.

Ultra-high-pressure water jetStraight-cone nozzleStructure parameterGrey wolf algorithmBP neural network

季瑞、陈正寿

展开 >

浙江海洋大学船舶与海运学院,舟山 316022

超高压水射流 直锥型喷嘴 结构参数 灰狼算法 BP神经网络

2024

水动力学研究与进展A辑
中国船舶科学研究中心

水动力学研究与进展A辑

CSTPCD北大核心
影响因子:0.594
ISSN:1000-4874
年,卷(期):2024.39(5)