首页|依托机器学习的煤矿冲击危险性综合预测方法分析

依托机器学习的煤矿冲击危险性综合预测方法分析

扫码查看
针对煤矿冲击地压危险性预测的难题,提出了基于模糊逻辑和神经网络技术结合的新型预测模型—动态模糊推理神经网络(DFINN).运用模糊数学和模糊神经网络技术处理复杂的煤岩体冲击危险信息,DFINN模型能自适应学习和整合地质条件的复杂性和开采活动的动态性,实现对冲击地压危险等级精确预测.该模型能够有效识别强冲击、中等冲击、弱冲击危险等级,提升煤矿冲击危险性预测的效率和质量,为矿井安全管理提供了有效的决策支持.通过对 128 组数据样本的验证,该模型在强、弱冲击危险性预测上表现出良好的准确率和可靠性,在样本量较小和数据不完整的条件下仍保持较高的鲁棒性.
Analysis of Comprehensive Prediction Method for Coal Mine Impact Hazards Based on Machine Learning
Aiming at the difficult problem of hazard prediction of rock burst in coal mine,a new type of prediction model—Dynamic Fuzzy Inference Neural Network(DFINN),based on the combination of fuzzy logic and neural network technology,is proposed.Fuzzy mathematics and fuzzy neural network technology are used to process complex information about rock burst hazards in coal and rock masses.The DFINN model can adaptively learn and integrate the complexity of geological conditions and the dynamics of mining activities,achieving accurate prediction of rock burst hazard levels.This model can effectively identify the hazard levels of strong impact,medium impact,and weak impact,improve the efficiency and quality of coal mine impact hazard prediction,and provide effective decision support for mine safety management.Through verification of 128 sets of data samples,the model shows good accuracy and reliability in predicting strong and weak impact hazards,and maintains high robustness even under condictions of small sample sizes and incomplete data.

machine learningrock burstlogicanalysis

顾敦清

展开 >

山东能源枣庄矿业(集团)有限责任公司,山东 枣庄 277099

机器学习 冲击地压 逻辑 分析

2024

山东煤炭科技
山东省煤炭学会

山东煤炭科技

影响因子:0.185
ISSN:1005-2801
年,卷(期):2024.42(8)