首页|煤矿开采设备故障预测技术应用研究

煤矿开采设备故障预测技术应用研究

扫码查看
为解决在煤矿开采设备运行中,设备故障频发常导致非计划性停机,影响生产效率问题,采用时序对齐技术处理设备监测数据,基于长短期记忆(LSTM)网络构建故障预测模型,通过对国家能源集团神东煤炭集团公司上湾煤矿的采煤机数据分析,选取与故障密切相关的因素,进行模型训练与测试.实验结果显示,模型能有效预测采煤机的过热跳闸故障,达到26 min的超前预警,显著提升了设备的安全性与可靠性,对于提高煤矿开采设备的故障预警能力具有重要意义.
Research and Application of Fault Prediction Technology for Coal Mining Equipment
To solve the problem of frequent equipment failures leading to unplanned shutdowns and affecting production efficiency in coal mining equipment operation,time-series alignment technology is used to process equipment monitoring data.A fault prediction model is constructed based on Long Short Term Memory(LSTM)network.By analyzing the data of the coal mining machine in Shangwan Coal Mine of Shendong Coal Group Company of National Energy Group,factors closely related to the faults are selected for model training and testing.The experimental results show that the model can effectively predict the overheating trip fault of the coal mining machine,achieving a 26 min advance early warning,significantly improving the safety and reliability of the equipment,and is of great significance for improving the fault early warning capability of coal mining equipment.

coal mining equipmentfault predcitionLong Short Term Memory Networktime series data

王伟东

展开 >

山西阳城阳泰集团小西煤业有限公司,山西 阳城 048103

煤矿开采设备 故障预测 长短期记忆网络 时序数据

2024

山东煤炭科技
山东省煤炭学会

山东煤炭科技

影响因子:0.185
ISSN:1005-2801
年,卷(期):2024.42(9)
  • 3