首页|基于RF-SA-SDCNN的涡扇发动机剩余寿命预测

基于RF-SA-SDCNN的涡扇发动机剩余寿命预测

扫码查看
针对涡扇发动机现阶段预测精确度低的问题,提出了一种基于RF-SA-SDCNN相融合的涡扇发动机剩余寿命预测方法.首先,将多传感器长序列数据进行指数平滑和归一化处理,以减少由于量纲、取值范围不同和噪声波动引起的误差,并利用随机森林算法对多元传感器信号进行重要性特征提取;然后,搭建基于随机森林算法和自注意机制与堆叠膨胀卷积神经网络相结合的预测模型,自注意机制通过对特征赋予不同权重分配加强贡献度,堆叠膨胀卷积通过扩大模型感受野提取时序特征用于回归分析,并利用GridSearch优化算法和StratifiedKFold交叉验证方法优化模型提升模型预测精度;最后,采用CMAPSS数据集验证验证所提方法的有效性.结果表明,所提方法可有效提高涡扇发动机剩余寿命预测精度.
Remaining life prediction of turbofan engines based on RF-SA-SDCNN
In order to solve the problem of low accuracy of turbofan prediction at present,a method of turbofan residual life prediction based on RF-SA-SDCNN fusion was proposed.First,the multi-sensor long sequence data were smoothed exponentially and normalized to reduce errors due to different dimensions,ranges of values,and noise fluctuations,and the importance features of the multi-sensor signals were extracted using random forest algorithm.Then,a prediction model based on random forest algorithm and self attention mechanism combined with stacked dilation convolution neural network was constructed.Self attention mechanism enhanced contribution degree by assigning different weights to features,and stacked dilation convolution extracted time series features for regression analysis by enlarging the model's sensory field.The model prediction accuracy was improved by using the grid search optimization algorithm and the StratifiedKFold cross validation method.Finally,the CMAPSS data set was used to verify the effectiveness of the proposed method.The results show that the proposed method can effectively improve the accuracy of turbofan residual life prediction.

random forest algorithmself-attentive mechanismstacked neural networkGridSearchK-Fold cross-validationexponential smoothing

肖亮、曾云

展开 >

昆明理工大学 冶金与能源工程学院,云南 昆明 650500

华能澜沧江水电股份有限公司,云南 昆明 650214

随机森林算法 自注意机制 堆叠神经网络 GridSearch K折交叉验证 指数平滑

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(3)
  • 14