首页|基于YOLOv5x的鸡只基本行为识别方法研究

基于YOLOv5x的鸡只基本行为识别方法研究

扫码查看
鸡只的健康养殖对于提高其产量和品质具有重要意义,传统的养殖模式缺乏专业的养殖指导和及时的疫病防控,无法满足健康养殖的要求,因此需要对鸡只行为进行识别,保证鸡只的健康生长.目前鸡只养殖过程的行为识别多采用人工观察或电子标签等方式,存在主观性强、耗时耗力的缺点.针对舍饲散养模式下鸡只外形、动作相似,相互之间易遮挡等问题,提出了基于YOLOv5x改进的YOLOv5x-Swin-TransformerV2-SPPF模型,在利用数据增强等技术建立鸡只行为识别数据集的基础上,通过改进主干网络、加强特征提取网络、增加小目标检测层及优化损失函数等方式,实现了对鸡只站立、采食、趴卧、饮水4种基本行为的自动识别,各行为平均精确率分别为90.8%,84.3%,92.8%,91.5%,4种行为识别的平均精确率均值(mAP)为89.9%,较改进前均值平均精度比YOLOv3、YOLOv5s、YOLOv5x分别提升了9.5%、4.37%、3.32%,通过结果分析验证了改进模型的有效性,达到利用深度学习技术进行鸡只的行为识别,实现对鸡只行为活动的实时监测,对于实现健康养殖和可持续发展的目标具有重要意义.
Research on chicken basic behavior recognition method based on YOLOv5x
The healthy breeding of chickens is of great significance to improve their production and quality.Traditional breeding models lack professional breeding guidance and timely disease prevention and control,and cannot meet the requirements of healthy breeding.Therefore,it is necessary to identify the behavior of chickens to ensure their healthy growth.At present,the behavior identification of chickens in the breeding process mostly adopts manual observation or electronic tags,which has the disadvantages of strong subjectivity and time-consuming and labor-intensive.In view of the problems of similar shapes and actions of chickens in free-range breeding mode,such as easy occlusion between each other,a YOLOv5x-Swin-TransformerV2-SPPF model based on the improvement of YOLOv5x was proposed.On the basis of establishing a chicken behavior recognition dataset by using data augmentation and other technologies,the model achieves automatic recognition of four basic behaviors of chickens,including standing,feeding,lying down,and drinking water.The average precision rates of each behavior are 90.8%for standing,84.3%for feeding,92.8%for lying down,and 91.5%for drinking water.The mean average precision(mAP)of four behavior recognition is 89.9%,which is 9.5%,4.37%,and 3.32%higher than that of YOLOv3,YOLOv5s,and YOLOv5x before improvement,respectively.Through result analysis,the effectiveness of the improved model was verified.It achieves real-time monitoring of chicken behavior activities by using deep learning technology for chicken behavior recognition.It was of great significance to achieve the goal of healthy breeding and sustainable development.

deep learningchicken behavior recognitionYOLOv5xsmall target detection

王春清、王悦涛、尚书旗、张宁

展开 >

青岛农业大学机电工程学院,山东 青岛 266109

深度学习 鸡只行为识别 YOLOv5x 小目标检测

山东省企业技术创新项目

202260803751

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(4)
  • 17