首页|基于神经网络的汽车摩擦异响风险预测研究

基于神经网络的汽车摩擦异响风险预测研究

扫码查看
摩擦异响是导致整车异响的重要因素,会影响整车的安静度.为有效判定摩擦异响风险,通过材料对间摩擦噪声测试获得响度数据;对响度-时间曲线进行响度分级设定,通过数值积分获得一种表征摩擦异响风险参数 SLCP值;以该参数为输入层,以摩擦试验过程中异响风险主观评价为输出层,建立神经网络模型,通过样本数据训练形成一种预测摩擦异响风险的方法.验证结果表明,预测模型有效并能保证一定的精度.
Research on risk prediction of automobile friction noise based on neural network
Friction noise was an important factor causing abnormal noise in the entire vehicle,which could affect the quietness of the vehicle.To effectively determine the risk of friction noise,loudness data was obtained through material to material friction noise testing.The loudness classification for the loudness time curve was set,and a characteristic friction noise risk parameter SLCP value was obtained through numerical integration.Using this parameter as the input layer and the subjective evaluation of abnormal noise risk during friction testing as the output layer,a neural network model was established,and a method for predicting friction abnormal noise risk was formed through sample data training.The validation results indicated that the prediction model was effective and could ensure a certain degree of accuracy.

abnormal friction soundmaterial matchingloudnessneural network

曹春雨、刘祖斌、邓建交、张坤超、刘振宏

展开 >

高端汽车集成与控制全国重点实验室,吉林长春 130011

中国第一汽车股份有限公司研发总院NVH部,吉林长春 130011

摩擦异响 材料匹配 响度 神经网络

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(5)
  • 8