首页|基于Transformer的多车交互场景车辆轨迹预测

基于Transformer的多车交互场景车辆轨迹预测

扫码查看
车辆轨迹预测是自动驾驶中的关键技术,对于提高自动驾驶车辆路径规划功能的安全性有重要意义.对变道场景中多辆车的历史车辆轨迹进行建模,基于NGSIM数据集提取场景样本,并构建基于注意力机制的Transformer编码器-解码器模型,通过捕捉轨迹之间的潜在关系,采用递归式方法生成对应的预测轨迹.实验表明,Transformer模型能更好捕捉相邻轨迹之间的时空交互特征,在复杂轨迹预测任务上呈现较优的预测结果.
Vehicle trajectory prediction of multi-vehicle interaction scene based on Transformer
Vehicle trajectory prediction was a key technology in autonomous driving,which was of great significance to improved the safety of the path planning function of autonomous vehicles.The historical vehicle tracks of multiple vehicles in the lane-changing scene were modeled first,scene samples were extracted based on the NGSIM data set,and an attention-mechanism-based Transformer encoder-decoder model was constructed.By capturing potential relationships between tracks,the corresponding predictive tracks were generated by a recursive method.Experiments showed that Transformer model could better capture the spatio-temporal interaction characteristics between adjacent trajectories,and present better prediction results in complex trajectory prediction tasks.

Transformermulti-vehicle interactiontrajectory predictionautomatic driving

周亦威、区卓挥、邓歆乐

展开 >

上海理工大学 管理学院,上海 200093

上海理工大学 智慧应急管理学院,上海 200093

Transformer 多车交互 轨迹预测 自动驾驶

教育部人文社科青年基金项目

22YJC790189

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(5)
  • 20