首页|基于改进YOLOv5香菇成熟度检测模型

基于改进YOLOv5香菇成熟度检测模型

扫码查看
准确检测成熟度对香菇智能化采摘具有重要意义,因此提出一种基于改进YOLOv5 实例分割香菇的成熟度检测方法.该方法在骨干网络的C3 模块中添加挤压和激发模块(SENet),增强了对香菇具体特征的学习能力,同时将颈部网络中的 2 个卷积模块替换为可变形卷积模块(Deformable Convnets v2,DCN v2),使网络更好地适应目标香菇的形状和位置变化,提高成熟度检测的准确率和鲁棒性.实验表明,改进后的模型识别香菇成熟度的检测精度达到91.7%,较原模型提高了 6.1%,检测的准确性与可靠性均优于原模型,为香菇智能化种植推广提供了技术支撑.
Mushroom maturity detection model based on improved YOLOv5
It is of great significance to accurately detect the maturity of mushroom for the promotion of intelligent cultivation of mushroom.In order to achieve accurate detection of mushroom maturity,a segmentation method for mushroom maturity detection based on improved YOLOv5 example was proposed.This algorithm added Squeeze and Excitation module(SENet)to C3 module in the backbone network to enhance the learning ability of specific characteristics of shiitake mushrooms.The two convolution modules in the neck network were replaced by Deformable Convnets v2(DCN v2),which made the network better adapt to the shape and position changes of the target,and improved the accuracy and robustness of the target detection.The experiment showed that the accuracy of the improved model was 91.7%,6.1%higher than that of the original model.The accuracy and reliability of the improved model were better than that of the original model,which provided technical support for the promotion of intelligent planting of mushroom.

YOLOv5attention mechanismdeformable convolutional modulemushroom maturity

李俊成、徐增丙、孙茂基

展开 >

武汉科技大学机械自动化学院,湖北 武汉 430081

武汉科技大学冶金装备及其控制教育部重点实验室,湖北 武汉 430081

YOLOv5 注意力机制 可变形卷积模块 香菇成熟度

国家自然科学基金面上项目

51775391

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(6)
  • 8