首页|基于改进极限学习机的路面附着系数估计

基于改进极限学习机的路面附着系数估计

扫码查看
路面附着系数是车-路相互作用中最为关键的参数之一,精确识别路面附着系数可用来确定汽车最佳安全控制方式,为此,提出一种基于改进极限学习机(Extreme Learning Machine,ELM)的路面附着系数估计方法.对车辆进行动力学分析,确定神经网络模型的输入量;搭建整车模型和工况,进行仿真试验建立数据集;利用限幅递推平均滤波算法处理数据集,并利用麻雀搜索算法对极限学习机进行改进优化,提高ELM的准确性及稳定性.试验结果表明,改进后的ELM在多方面性能有综合提升,预测准确率为 93.4%,提高了 4.89%,收敛速度提高了 41.33%.
Road adhesion coefficient estimation based on improved extreme learning machine
The road adhesion coefficient is one of the most critical parameters in the interaction between vehicle and road.Accurately identifying the road adhesion coefficient can be used to determine the optimal safety control mode for vehicles.Therefore,a method for estimating the road adhesion coefficient based on an improved extreme learning machine(ELM)was proposed.First,the dynamic analysis of the vehicle was conducted to determine the input variables of the neural network model.Then,the complete vehicle model and operating conditions were set up to establish a dataset through simulation experiments.Next,the dataset was processed using a clipping recursive averaging filter algorithm,and the ELM was improved and optimized using the sparrow search algorithm to enhance the accuracy and stability of the ELM.Finally,experimental results showed that the improved ELM had a comprehensive improvement in performance,with a prediction accuracy of 93.4%,an increase of 4.89%,and a 41.33%increase in convergence speed.

extreme learning machineestimation of road adhesion coefficientsparrow search algorithmneural network

康谷峰、张冰战、尹晨晨、边博乾、邱明明

展开 >

合肥工业大学汽车与交通工程学院,安徽 合肥 230009

合肥工业大学安徽省数字化设计与制造重点实验室,安徽 合肥 230009

合肥工业大学机械工程学院,安徽 合肥 230009

合肥工业大学 安徽省汽车技术与装备工程研究中心,安徽 合肥 230009

展开 >

极限学习机 路面附着系数估计 麻雀搜索算法 神经网络

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(8)