首页|基于语义地图的目标定位和智能导航

基于语义地图的目标定位和智能导航

扫码查看
针对移动机器人对于复杂室内环境的语义信息利用不足问题,提出一种基于二维语义栅格地图的声控语义导航方法,弥补室内机器人在单场景环境下语义导航领域的空缺.基于构建的二维语义栅格地图,采用声控语义导航算法,用语音指令驱动机器人导航到相应的语义物体附近,精确定位语义物体,并在这些物体周围的安全区域计算出合适的导航点;配合语音识别和自然语言处理技术,使机器人能够根据用户模糊的语音指令精确移动到指定的语义物体附近,实现智能化和灵活性更高的导航决策.实验结果表明,导航成功率达到了 93%;在布置有不规则障碍物的环境中,该语义导航碰撞率仅为 4.6%.所提声控语义导航方法可行,避障能力具有明显优势.
Semantic map-based target localization and intelligent navigation
To address the issue of insufficient utilization of semantic information in complex indoor environments by mobile robots,a voice-controlled semantic navigation method based on a 2D semantic grid map was proposed.This approach fills the gap in the field of semantic navigation for indoor robots in single-scene environments.Utilizing the constructed 2D semantic grid map,a voice-controlled semantic navigation algorithm was employed to guide the robot to navigate near the corresponding semantic object based on voice commands.The robot accurately locates the semantic object and calculates suitable navigation points within a safe area around these objects.Combined with voice recognition and natural language processing technologies,the robot was capable of precisely moving to the specified semantic object based on vague user voice commands,achieving more intelligent and flexible navigation decisions.Experimental results demonstrated that the navigation success rate reached 93%,and in environments with irregular obstacles,the collision rate of this semantic navigation method was only 4.6%.The proposed voice-controlled semantic navigation method is feasible and exhibits significant advantages in obstacle avoidance.

2D semantic grid napssemantic navigationobject detectionvoice recognitionobstacle avoidance capability

辜忠波、蒋林、崔芯睿、罗焱、杨文琦

展开 >

武汉科技大学 冶金装备及其控制教育部重点实验室,湖北 武汉 430081

武汉科技大学 机器人与智能系统研究院,湖北 武汉 430081

二维语义栅格地图 语义导航 目标检测 语音识别 避障能力

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(10)