首页|一种基于逐次变分模态分解和改进深度极限学习机的滚动轴承故障分类方法

一种基于逐次变分模态分解和改进深度极限学习机的滚动轴承故障分类方法

扫码查看
为应对滚动轴承故障诊断中特征提取较难和故障类型识别准确率偏低等问题,提出一种基于逐次变分模态分解(SVMD)与分形维数(FD)结合算术优化算法(AOA)优化深度极限学习机(DELM)的轴承故障诊断方法.通过SVMD对轴承原始振动信号进行多尺度分解,得到一系列固有模态分量(IMFs);计算不同状态下各个IMF分量的FD,归一化后作为故障特征向量;利用 AOA-DELM 模型实现轴承的故障诊断.采用美国凯斯西储大学(CWRU)轴承数据集作为实验数据进行实验验证,结果表明,所提方法在滚动轴承故障诊断中具有优越性,识别准确率可达 98.80%.
A method based on SVMD and improved DELM for fault classification of rolling bearings
In order to address the problems of difficult feature extraction and low accuracy of fault classification in rolling bearing fault diagnosis,a bearing fault diagnosis method based on Successive Variational Mode Decomposition(SVMD),Fractal Dimension(FD),Arithmetic Optimization Algorithm(AOA)and Deep Extreme Learning Machine(DELM)was proposed.A series of intrinsic mode functions(IMFs)were obtained by SVMD of the original vibration signals of bearings.The FD of each component under different states are calculated and normalized as the fault feature vectors.The AOA-DELM model was applied to achieve the fault diagnosis of bearings.The Case Western Reserve University(CWRU)bearing data set was used as the experimental data for validation.The results showed that the proposed method was superior in rolling bearing fault classification diagnosis,and the recognition accuracy can reach 98.80%.

bearing fault classificationSVMDDELMarithmetic optimization algorithm

丁国荣

展开 >

天水市麦积区普查调查中心,甘肃 天水 741020

轴承故障分类 逐次变分模态分解 深度极限学习机 算术优化算法

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(10)