首页|基于Swin-CNN的苹果叶片病斑异常检测研究

基于Swin-CNN的苹果叶片病斑异常检测研究

扫码查看
针对当新的病害出现时,可能无法及时检测到的问题,提出了一种应对苹果叶病斑的新方法,即异常检测.采用了一种通用的图像异常增强网络,只需要训练一次,网络(Swin-CNN)就可以对从未见过的病斑叶片进行检测.Swin-CNN在一组无异常图像上进行训练,使用随机掩码,以无监督的方式学习异常与背景之间的空间上下文特征.实验结果表明,Swin-CNN为最优模型,对苹果叶叶斑病、褐斑病、灰斑病、锈病的识别准确率分别达到了88.1%、84.0%、87.0%、97.6%.该方法可以为苹果叶病斑的早期预警提供理论基础,为其他的作物病害检测提供参考.
Research on apple leaf spot anomaly detection based on Swin-CNN
Addressing the issue of potential failure in timely detection when new diseases emerge,a novel approach for dealing with apple leaf spot diseases has been introduced:anomaly detection.A universal image anomaly enhancement network(Swin-CNN)was adopted,which only needs to be trained once to detect diseased leaves that had never been seen before.Swin-CNN was trained on a set of anomaly free images using random masks to learn spatial contextual features between anomalies and background in an unsupervised manner.The experimental results showed that Swin-CNN was the optimal model,achieving an accuracy of 88.1%in identifying apple leaf spot disease,84.0%in identifying apple leaf brown spot disease,87.0%in identifying apple leaf gray spot disease,and 97.6%in identifying apple leaf rust disease.This method can provide a theoretical basis for early warning of apple leaf disease spots and serve as a reference for the detection of other crop diseases.

Swin-CNNanomaly detectiontransform domain search modulerandom maskingapple leaf spots

李文东、朱幸辉、邓阳君

展开 >

湖南农业大学 信息与智能科学技术学院,湖南 长沙 410125

Swin-CNN 异常检测 变换域搜索模块 随机掩码 苹果叶病斑

2024

农业装备与车辆工程
山东省农业机械科学研究所 山东农机学会

农业装备与车辆工程

影响因子:0.279
ISSN:1673-3142
年,卷(期):2024.62(12)