山东农业大学学报(自然科学版)2024,Vol.55Issue(1) :100-107.DOI:10.3969/j.issn.1000-2324.2024.01.014

基于改进YOLOv7的线虫智能识别研究

Intelligent Identification of Nematodes Based on Improved YOLOv7 Neural Network

牛成文 侯华鑫 谢雯媛 王秀丽 殷汝枭 曲建平 王己光 周波
山东农业大学学报(自然科学版)2024,Vol.55Issue(1) :100-107.DOI:10.3969/j.issn.1000-2324.2024.01.014

基于改进YOLOv7的线虫智能识别研究

Intelligent Identification of Nematodes Based on Improved YOLOv7 Neural Network

牛成文 1侯华鑫 1谢雯媛 2王秀丽 1殷汝枭 3曲建平 4王己光 5周波6
扫码查看

作者信息

  • 1. 山东农业大学 信息科学与工程学院, 山东 泰安 271018
  • 2. 山东财经大学 金融学院, 山东 济南 82911086
  • 3. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001
  • 4. 山东农业大学 生命科学学院, 山东 泰安 271018
  • 5. 山东未来生物科技有限公司, 山东 泰安 271000
  • 6. 山东农业大学 生命科学学院, 山东 泰安 271018;山东未来生物科技有限公司, 山东 泰安 271000
  • 折叠

摘要

线虫存活率是杀线试剂活性测试的重要指标,目前线虫计数多以显微镜下的人工识别方式为主,存在耗时长、准确率低、工作量大等问题,利用卷积神经网络实现线虫的智能识别与计数是解决上述问题的重要途径.本文基于YOLOv7网络架构进行了三方面改进:主干网络添加ECA注意力机制;用EIoU替换原模型损失函数;将原本的激活函数替换为Mish激活函数.对比试验测试发现,改进后YOLOv7模型的mAP达到了95.3%,与SSD、Faster-RCNN等经典目标检测算法相比分别提高12.3、6.2个百分点,在准确率、召回率和F1因子上分别提高了0.6、2.4和1.5个百分点,且减少了冗余信息的干扰,增强了多尺度目标的特征提取能力;提高了重叠黏连线虫目标的检测能力和回归精度.此外,本文基于Vue、SpringBoot等技术开发了一款线虫存活状态检测系统,将该系统与本文改进后的模型部署到服务器,为研究人员提供了方便、高效的线虫死/活状态在线智能识别与计数服务.

Abstract

Nematode survival rate is an important indicator for assessing the effectiveness of nematicidal reagents.Currently,nematode counting relies heavily on manual identification under a microscope,which is time-consuming,inaccurate and labor-intensive,etc.The use of a convolutional neural network to achieve intelligent identification and counting of nematodes is a crucial method to solve the above problems.We proposes an improved YOLOv7 neural network model with three improvements:adding ECA attention mechanism modules to the main network;optimizing the loss function of the original model by EIoU and replacing the original activation function with the Mish activation function.Comparative experimental tests reveal that the mAP of the improved YOLOv7 model reaches 95.3%,which is 12.3 and 6.2 percentage points higher than that of the classical target detection algorithms,such as SSD and Faster-RCNN,and 0.6,2.4 and 1.5 percentage points higher than that of SSD,Faster-RCNN and other classic target detection algorithms in terms of the accuracy rate,the recall and the F1 factor,respectively.Additionally,the model reduces redundancy,enhances multiscale feature extraction,and improves detection and regression precision for overlapping nematodes.In order to implement the research,the improved model was deployed to the server,and an application system for nematode survival status detection was developed using Vue,SpringBoot and other technologies,these provide the convenient and efficient nematode identification and counting service for researchers.

关键词

目标检测/注意力机制/损失函数/激活函数/线虫

Key words

Object detection/attention mechanism/loss function/activation function/nematode

引用本文复制引用

基金项目

&&()

&&(2021BBF02006)

&&(2023BCFO1015)

出版年

2024
山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
参考文献量15
段落导航相关论文