山东农业大学学报(自然科学版)2024,Vol.55Issue(2) :254-261.DOI:10.3969/j.issn.1000-2324.2024.02.015

基于轻量级神经网络的小尾寒羊面部识别

Sheep Face Recognition Based on Lightweight Neural Network

孙权 宣传忠 张梦宇 张曦文 赵明辉 宋硕 郝敏
山东农业大学学报(自然科学版)2024,Vol.55Issue(2) :254-261.DOI:10.3969/j.issn.1000-2324.2024.02.015

基于轻量级神经网络的小尾寒羊面部识别

Sheep Face Recognition Based on Lightweight Neural Network

孙权 1宣传忠 1张梦宇 1张曦文 1赵明辉 1宋硕 1郝敏1
扫码查看

作者信息

  • 1. 内蒙古农业大学机电工程学院,内蒙古呼和浩特 010018
  • 折叠

摘要

为实现羊只面部身份快速识别,本文以自建数据集为研究对象,提出了一种基于SSD的轻量化检测算法.首先该算法将SSD的主干网络VGG16替换成轻量级神经网络MobileNetv2,构建了一种轻量化混合神经网络模型.其次在特征提取网络参数量为1122×32的bottleneck层前端和72×160的bottleneck层后端分别引入CA、SE、CBAM和ECA注意力机制,实验结果表明72×160的bottleneck层后端引入ECA注意力机制是最优的.最后将smoothL1损失函数替换成BalancedL1损失函数.最优模型(SSD-v2-ECA2-B)模型大小从SSD的132MB减小到56.4MB,平均精度均值为81.16%,平均帧率为64.21帧/s,相较于基础的SSD模型平均精度均值提升了0.94个百分点,模型体积减小了75.6MB,检测速度提高了5.23帧/s.利用相同数据集在不同目标检测模型上进行对比试验,与SSD模型、Faster R-CNN模型、Retinanet模型相比,平均精度均值分别提升了0.36、2.40和0.07个百分点,与改进前的模型相比具有更好的综合性能.改进模型在大幅减少模型大小及其计算量的同时使模型性能保持在一个较高的水平,为畜牧养殖数字化和智能化提供方法参考,具有较高的应用价值.

Abstract

In order to achieve fast facial identity recognition of sheep,this paper proposes a lightweight detection algorithm based on SSD with a self-built dataset.First,the algorithm replaces the SSD backbone network VGG16 with the lightweight neural network Mobilenet v2,and constructs a lightweight hybrid neural network model.Second,CA,SE,CBAM,and ECA attention mechanisms were introduced in the front end of the bottomleneck layer with 1122×32 parameter counts and the back end of the bottomleneck layer with 72×160,the results show that the introduction of the ECA attention mechanism at the back end of the bottleneck layer with 72×160 parameters of the feature extraction network is the most effective,and finally the smoothL1 loss function is replaced by the BalancedL1 loss function.The optimal model(SSD-v2-ECA2-B)size is reduced from 132MB of the original SSD to 56.4MB,the average accuracy mean value is 81.16%,and the average frame rate is 64.21 frames/s,which is 0.94 percentage points higher than the average accuracy mean value of the base SSD model,the model size is reduced by 75.6MB,and the detection speed is improved by 5.23 frames/s.Compared with SSD model,Faster R-CNN model and RETINANET model,the average accuracy of the two models was increased by 0.36%and 2.40.07%,respectively,compared with the improved model,it has better comprehensive performance.So the improved model can keep the model performance at a high level with the reduced model size and computational effort,and provide reference method for digitization and intelligence of animal husbandry and breeding with high application value.

关键词

羊脸识别/SSD目标检测算法/MobileNetv2轻量级神经网络

Key words

Sheep face recognition/SSD target detection algorithm/MobileNetv2 lightweight neural network

引用本文复制引用

基金项目

内蒙古直属高校基本科研业务费(BR221032)

出版年

2024
山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
参考文献量24
段落导航相关论文