首页|基于Sentinel-2影像的济宁市冬小麦种植面积提取研究

基于Sentinel-2影像的济宁市冬小麦种植面积提取研究

扫码查看
植被的遥感提取通常利用单一植被指数,而单一植被指数无法全面反映不同植被之间的差异性,易造成漏分、错分现象,影响提取精度。为有效提取冬小麦种植面积,本文基于PIE-Engine遥感平台,利用Sentinel-2遥感影像数据,结合采样点以原始特征波段、指数特征为输入特征,分别使用随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)分类法对济宁市冬小麦种植面积进行提取,评价相同输入特征下不同分类方法的提取精度、相同分类方法不同输入特征的分类精度,最终得出最佳分类特征以及分类方法。结果表明:以指数特征作为输入特征,结合随机森林分类法提取济宁市2023年冬小麦种植面积的精度最优,验证矩阵ACC系数为0。984,验证矩阵Kappa系数为0。974。可见,基于Sentinel-2遥感影像的随机森林-指数特征模型可较准确提取济宁市冬小麦种植区域,本研究可提供一种提取冬小麦种植面积的有效方法,为调控农业生产、合理利用自然资源、实现农业精准管理、保障粮食有效供给提供辅助依据。
Extraction of Winter Wheat Planting Area in Jining City Based on Sentinel-2 Images
The single vegetation index was often used in remote sensing extraction of winter wheat,but a single vegetation index cannot fully reflect the differences between different vegetation,which can easily lead to missed and incorrect classification,affecting the extraction accuracy.To effectively extract the planting area of winter wheat,this article is based on the PIE Engine remote sensing platform,using Sentinel-2 remote sensing image data,combined with sampling points and original feature bands and exponential features as input features.Random Forest(RF)and Support Vector Machine(SVM)classification methods are used to extract the planting area of winter wheat in Jining City.The extraction accuracy of different classification methods under the same input features and the classification accuracy of different input features under the same classification method are evaluated,and the best classification feature and classification method are ultimately obtained.The results show that using exponential features as input features and combining with random forest classification method to extract the winter wheat planting area in Jining City in 2023 has the best accuracy,with a validation matrix ACC coefficient of 0.984 and a validation matrix Kappa coefficient of 0.974.It can be seen that the random forest index feature model based on Sentinel-2 remote sensing images can accurately extract the winter wheat planting area in Jining City.This study can provide an effective method for extracting the winter wheat planting area,providing auxiliary basis for regulating agricultural production,rational utilization of natural resources,achieving precise agricultural management,and ensuring effective food supply.

Jiningwinter wheatRandom ForestSupport Vector MachineSentinel-2

付欣、赵娜、魏伟、张明慧、张立飞、万莹

展开 >

山东省农村经济管理服务总站,山东济南 250014

山东大卫国际建筑设计有限公司,山东济南 250014

山东泓诚空间规划设计有限公司,山东济南 250014

山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队),山东 济宁 272100

平邑县农业农村局,山东 平邑 273300

临沂市河东区人民政府办公室,山东临沂 276000

展开 >

济宁市 冬小麦 随机森林 支持向量机 Sentinel-2

2024

山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
年,卷(期):2024.55(3)
  • 11