首页|多源异构数据和注意力门控机制的小麦产量预测

多源异构数据和注意力门控机制的小麦产量预测

扫码查看
针对传统的单模态数据预测小麦产量存在精度不高的问题,提出一种结合多源异构数据和注意力门控机制的小麦产量预测方法。首先引入了特征级的门控策略,来捕获每个模态内部特征的信息变化;然后利用神经网络评估每个模态内的置信度分数,并构建模态间的有效信息获取模块;最后设计了基于Transformer的空间和通道注意力门控机制模块,将不同模态之间的有效信息进行充分的融合,从而获得最佳的预测特征表示。实验结果表明,所提方法与传统方法相比具有更高的预测精准度,RMSE和MAE分别仅为809 kg/hm2和522 kg/hm2,R2则达到了0。806,通过对河南省近10年的小麦产量进行预测,得到的三项评价指标均相对稳定,且展现出了较强的鲁棒性。消融实验也验证了该方法中的不同组件均能有效提高小麦产量的预测精度,可为相关部门制定保障粮食安全管理决策提供有力的数据支持。
Wheat Yield Prediction Based on Multi-Source Heterogeneous Data and Attention Gate Mechanism
To solve the problem of low precision of traditional single-mode data for wheat yield prediction,we proposed a new method combining multi-source heterogeneous data and attention gating mechanism.Firstly,a feature-level gating strategy was introduced to capture the information variation within each modality.Then,a neural network is used to evaluate the confidence scores within each modality and construct a module for obtaining effective information between modalities.Finally,a space and channel attention gating mechanism module based on Transformer is designed to fully integrate effective information between different modes,so as to obtain the best prediction feature representation.The comparative experimental results show that the proposed method has higher prediction accuracy compared to traditional methods,with RMSE and MAE only reaching 809 kg/hm2 and 522 kg/hm2,respectively,and R2 reaching 0.806.The three evaluation indicators obtained by predicting the wheat yield in Henan province over the past 10 years are relatively stable and demonstrate strong robustness.The ablation experiment also verified that different components in our method can effectively improve the prediction accuracy of wheat yield,and can provide strong data support for relevant departments to make decisions to ensure food security management.

Wheat yield predictionmulti-source heterogeneous dataattention mechanismgating mechanismfeature fusion

陈书理、张书贵、赵展

展开 >

开封大学信息工程学院,河南开封 475001

河南省高标准农田智能灌溉工程研究中心,河南 开封 475001

开封市农业物联网工程技术中心,河南 开封 475001

小麦产量预测 多源异构数据 注意力机制 门控机制 特征融合

国家自然科学基金项目河南省高等学校重点科研项目计划

6170218524B520025

2024

山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
年,卷(期):2024.55(3)
  • 19