首页|基于深度学习的冬小麦空间分布提取方法研究

基于深度学习的冬小麦空间分布提取方法研究

扫码查看
准确的冬小麦空间分布数据对于政府相关部门指导农业生产、优化产业结构具有重要意义。本文针对从高分辨率遥感影像上获取冬小麦空间分布数据的需要,建立了一种基于卷积神经网络的高效语义分割模型(Dense-U-Coord Net),用于获取高精度冬小麦空间分布信息。Dense-U-Coord Net模型以DenseNet为骨干网络建立了一种"U"型网络结构,利用密集连接的方式实现不同层次特征的融合;以坐标注意力机制(coordinate attention)和OCR模块(object-contextual representations)为基础建立了一种多维度特征注意力机制,用于根据上下文信息以及空间位置信息对通过融合生成的特征进行优化,以提高模型生成一致性特征的能力。Dense-U-Coord Net使用Softmax作为分类器实现图像分割,提取出冬小麦空间分布数据。选择河北省邯郸市馆陶县为研究区,GF-6PMS(Gaofen-6 Panchromatic and Multispectral Scanner)遥感影像为数据源,选择SVM、U-Net、ERFNet和RefineNet模型作为对比模型开展对比实验。实验结果表明,Dense-U-Coord Net模型的查准率Precision(92。5%)、查全率Recall(93。4%)、平均像素精度MPA(94。2%)、和MIou指数(91。7%)均优于对比模型,证明了Dense-U-Coord Net在提取冬小麦空间分布信息方面具有优势。本文提出的方法能够为现代农业提供基础数据。
Extraction Spatial Distribution of Winter Wheat Based on Deep Learning
Accurate spatial distribution data of winter wheat is of significant importance for government departments to guide agricultural production and optimize industrial structure.This study addresses the need to obtain spatial distribution data of winter wheat from high-resolution remote sensing images by establishing an efficient semantic segmentation model based on convolutional neural networks(Dense-U-Coord Net)to acquire high-precision spatial distribution information of winter wheat.The Dense-U-Coord Net model uses DenseNet as its backbone to create a"U"-shaped network structure,which facilitates the fusion of features at different levels through dense connections.It also establishes a multi-dimensional feature attention mechanism based on coordinate attention and OCR modules(object-contextual representations),which optimizes the fused features based on contextual and spatial location information to enhance the model's ability to generate consistent features.Dense-U-Coord Net employs Softmax as the classifier for image segmentation to extract spatial distribution data of winter wheat.The study area selected is Guantao County,Handan City,Hebei Province,using GF-6 PMS(Gaofen-6 Panchromatic and Multispectral Scanner)remote sensing images as the data source.SVM,U-Net,ERFNet,and RefineNet models are chosen as comparative models for comparative experiments.The experimental results demonstrate that the Dense-U-Coord Net model outperforms the comparative models with Precision(92.5%),Recall(93.4%),Mean Pixel Accuracy(MPA)(94.2%),and Mean Intersection over Union(MIoU)(91.7%).These findings confirm the advantages of Dense-U-Coord Net in extracting spatial distribution information of winter wheat.The proposed method provides essential data for modern agriculture.

Winter wheatartificial neural networkremote sensing image processingattention modelimage segmentation

董航、陈芳芳、李兆龙、李峰、张承明

展开 >

山东农业大学信息科学与工程学院,山东 泰安 271018

烟台理工学院信息工程学院,山东 烟台 264003

山东省气候中心,山东 济南 250000

冬小麦 人工神经网络 遥感图像处理 注意力模型 图像分割

2024

山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
年,卷(期):2024.55(6)