首页|基于目标识别及跟踪技术的母羊发情行为检测实证研究

基于目标识别及跟踪技术的母羊发情行为检测实证研究

扫码查看
随着畜牧养殖数字智能化监控技术的产业化应用,如何运用深度机器学习技术对畜牧养殖监控视频数据进行发挖掘应用,从现有粗糙的低精度识别提升到更精准的高精度分析,从直观的浅层特征深入到复杂关联的深层特征,已成为当前畜禽环境监控系统亟待解决的关键技术难题。目前,母羊发情行为检测主要是依靠人工观察和专用的可穿戴设备,存在误差大、容易引起母羊应激反应和成本高等问题。本文针对母羊发情所呈现的行走频繁和食欲减退的鲜明特征,选取山东省泰安市小兰沃村某羊场为实验场所,依据数字畜牧监控系统录制的实时视频数据。首先采用Yolov5目标检测模型,检测和识别发情母羊目标;然后采用DeepSORT目标跟踪算法,获取发情母羊在圈养食饲活动中的实时位置,通过提取目标的位置坐标数据,计算出其在目标羊圈活动的移动轨迹并计算其移动距离。最后,设计了基于行走距离检测模型和基于食饲期间行走主轨迹痕迹检测模型,实现发情母羊的实时精准检测。本文工作将为集约化圈养下的小群体母羊合理分栏,精细高效养殖管理,提供了进一步的理论探索和可行性应用方案。
Empirical Study on Ewe Estrus Behavior Detection Based on Target Recognition and Tracking Technology
With the industrial application of digital intelligent monitoring technology in livestock farming,how to utilize deep machine learning techniques to deeply mine and apply monitoring video data from livestock farming,to upgrade from the current rough and low-precision identification to more precise high-precision analysis,and to delve from intuitive shallow features into complex associated deep features,has become a critical technical challenge that the current livestock environmental monitoring system urgently needs to be addressed.At present,the detection of estrus behavior in ewes mainly relies on manual observation and special wearable devices,which has the problems of large error,easy to cause stress reaction and high cost in ewes.This paper focuses on the distinctive features of estrus in ewes,which include frequent walking and decreased appetite,and selects a sheep farm in Xiaolanwo Village,Tai'an City,Shandong Province,as the experimental site,based on real-time video data recorded by the digital livestock monitoring system.Firstly,the Yolov5 object detection model is used to detect and identify estrus ewes;then,the DeepSORT target tracking algorithm is employed to obtain the real-time location of estrus ewes during feeding activities.By extracting the target's position coordinate data,Finally,a walking distance detection model and a walking main trajectory trace detection model during feeding are designed to achieve real-time and accurate detection of estrus ewes.The research provides further theoretical exploration and feasible application solutions for a reasonable grouping and precise and efficient breeding management of small groups of ewes under intensive confinement.

Deep learninglivestock breedingewesestrustarget tracking

纪玉浩、王苗苗、刘成、岳训

展开 >

山东农业大学信息科学与工程学院,山东 泰安 271000

深度学习 畜禽养殖 母羊 发情 目标跟踪

2024

山东农业大学学报(自然科学版)
山东农业大学

山东农业大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.565
ISSN:1000-2324
年,卷(期):2024.55(6)