首页|基于改进的时频自适应胶囊网络轴承故障诊断方法

基于改进的时频自适应胶囊网络轴承故障诊断方法

扫码查看
轴承是保障旋转机械安全运行的关键部件,传统的故障诊断方法在轴承复杂多变的运行环境中故障特征提取难且识别难度大.为此,提出了一种基于改进的时频自适应胶囊网络轴承故障诊断方法.首先,将一维原始振动信号通过EEMD-HHT特征增强方法转化为复合时频结构数据,增强非平稳信号特征的可分性;然后,改进原胶囊网络卷积层,用于自适应深度提取振动信号的时频结构特征;最后,针对卷积神经网络的平移不变性引入胶囊层,采用动态路由算法学习储存特征信息,并实现故障类型智能诊断.试验结果表明,所提方法较现有方法具有更强的故障敏感特征挖掘能力、更高的诊断精度及工况自适应能力.
Fault Diagnosis Method of Bearings Based on Adaptive Time-Frequency Capsule Network
Bearing is a key component to ensure the safe operation of rotating machinery,and the traditional fault di-agnosis method is difficult to extract fault features and difficult to identify in the complex and changing operating environ-ment of bearings.An improved time-frequency adaptive capsule network-based bearing fault diagnosis method was pro-posed.Firstly,the one-dimensional original vibration signal was transformed into composite time-frequency structure da-ta by EEMD-HHT feature enhancement method to enhance the separability of non-stationary signal features.Then,the convolutional layer of the original capsule network was improved for adaptive depth extraction of time-frequency structure features of vibration signals.Finally,the capsule layer was introduced for the translation invariance of the convolutional neural network using dynamic routing algorithm to learn stored feature information for achieving intelligent diagnosis of fault types.The experimental results show that the proposed method has stronger fault-sensitive feature mining ability and higher diagnostic accuracy as well as working condition adaptive ability than the existing methods.

bearingstime-frequency structurefeature extractioncapsule networkfault diagnosis

胡志平、许颜贺、刘燚、祝旭

展开 >

湖北白莲河抽水蓄能有限公司,湖北黄冈 438600

华中科技大学数字流域科学与技术湖北省重点实验室,湖北武汉 430074

重庆川仪软件有限公司,重庆 400041

轴承 时频结构 特征提取 胶囊网络 故障诊断

国家自然科学基金项目

51809099

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(1)
  • 7