首页|基于改进大猩猩算法的主动配电网动态重构

基于改进大猩猩算法的主动配电网动态重构

扫码查看
针对传统算法无法妥善应对含分布式电源(DG)和电动汽车(EV)的主动配电网重构问题,提出了一种改进的大猩猩部队优化算法.首先使用"无重复"编码策略对配电网进行编码,降低不可行性解的产生,其次对大猩猩部队优化算法使用Circle混沌映射,初始化种群,增加种群多样性,并且引入大猩猩自适应变异算子,来增强算法对搜索空间中新位置搜索能力,最后通过使用镜头对位学习和自适应β-爬坡策略,增加算法容错性,避免算法陷入局部最优.通过仿真分析可知,所提改进算法与其他智能算法相比,重构效果更为理想,具有寻优精度高和收敛迭代次数小的优势,其全局寻优率可达到100%,验证了所提模型的有效性和优越性.
Dynamic Reconfiguration of Active Distribution Network Based on Improved Gorilla Troops Optimizer
In response to the inability of traditional algorithms to effectively address the problem of active distribution network reconstruction with distributed generation and electric vehicles,an improved gorilla troops optimizer was pro-posed.Firstly,the"no duplication"coding strategy was used to code the distribution network for reducing the generation of infeasible solutions.Secondly,the Circle chaotic map was adopted to initialize the population and increase the diversity of the population for the gorilla troop optimization algorithm.The the gorilla adaptive mutation operator was introduced to enhance the algorithm's ability to search for new locations in the search space.Finally,the lens alignment learning and adaptive β-hill climbing strategy increased the fault tolerance of the algorithm and avoid the algorithm falling into local op-timum.Through simulation analysis,it can be seen that compared with other intelligent algorithms,the proposed algo-rithm has better reconstruction effect,and has the advantages of high optimization accuracy and small convergence itera-tions.Its global optimization rate can reach 100%,which verifies the effectiveness and superiority of the proposed model.

distributed generationelectric vehicleactive distribution networkdynamic reconfigurationgorilla troops optimizer

王晨、徐璐辉、王淑侠、邬蓉蓉

展开 >

广西科技大学自动化学院,广西柳州 545616

西北工业大学机电学院,陕西西安 710072

广西电网有限责任公司电力科学研究院,广西南宁 530023

分布式电源 电动汽车 主动配电网 动态重构 大猩猩部队优化算法

国家重点研发计划广西自然科学基金项目

2019YFB17038002018GXNSFAA050029

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(1)
  • 12