首页|基于U2-Net+的透水混凝土CT影像孔隙分割

基于U2-Net+的透水混凝土CT影像孔隙分割

扫码查看
针对现阶段主流的透水混凝土CT影像孔隙分割方法存在的问题,提出了一种堆叠高效 RSU 模块的U2-Net+的图像分割方法.该方法通过堆叠高效的 RSU模块,在网络中引入了更多的上采样节点和跳跃连接,还原了更多下采样阶段丢失的特征图细节;在编码阶段增加了一个可学习的下采样操作,进一步提升了网络对细节的捕获能力;简化了原网络的深度监督,避免了底层特征图对融合输出特征图的负面影响;将单一的标准二分类交叉熵损失函数改为 Focal loss和 IoU loss组成的混合损失函数,提升了网络对高噪声孔隙的关注度;最后由于数据集的特点加网络改进的提升,原网络中各模块的中间通道数得以进一步缩减,减小了网络体积.试验结果表明,U2-Net+相比 U2-Net†在保证轻量化和快速性的同时,平均交并比、精确度、F1 得分由94.12%、88.89%、93.28%分别提升至 94.24%、91.15%、94.29%;U2-Net+综合指标优于 U-Net、U-Net+ +、U-Net3+、U2-Net、U2-Net†,各指标相较于主流的阈值分割算法至少提高 23.29%,实现了透水混凝土 CT影像孔隙的精准、快速分割.
Pore Segmentation of Permeable Concrete CT Images Based on U2-Net+
A method for image segmentation called U2-Net+ with stacked efficient RSU modules was proposed to ad-dress the problems of current mainstream porous concrete CT image pore segmentation methods.The method introduced more up-sampling nodes and skipped connections by stacking efficient RSU modules in the network,and restored more details of feature maps lost in the down-sampling stage.An additional learnable down-sampling operation was added to enhance the network's ability to capture details in the encoding stage.The original network's depth supervision was simpli-fied to avoid negative impacts of low-level feature maps on fused output feature maps.The single standard binary cross-entropy loss function was replaced with a mixed loss function composed of Focal loss and IoU loss,which improves the network's attention to high-noise pores.Finally,due to the dataset characteristics and network improvements,the num-ber of middle channels in each module of the original network could be further reduced,reducing the network volume.Compared to U2-Net†,U2-Net+ achieves mmIoU,PPrecision and FF1score increased from 94.12% ,88.89% and 93.28% to 94.24% ,91.15% and 94.29% ,while maintaining lightweight and fast performance.The comprehensive indicators of U2-Net+ are superior to those of U-Net,U-Net++,U-Net3+,U2-Net,and U2-Net†.Each evaluation metric has been improved by at least 23.29% compared to mainstream threshold segmentation algorithms,which achieves accurate and fast segmentation of porous concrete CT image pores.

CT image of pervious concreteimage segmentationdeep learningU2-Net

侯斌、孙水发、张蕊、崔文超、李玉博

展开 >

湖北省水电工程智能视觉监测重点实验室,湖北 宜昌 443000

三峡大学计算机与信息学院,湖北 宜昌 443002

杭州师范大学信息科学与技术学院,浙江 杭州 311121

湖北工业大学土木建筑与环境学院,湖北 武汉 430000

展开 >

透水混凝土CT影像 图像分割 深度学习 U2-Net

国家自然科学基金项目

52208245

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 8