首页|基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究

基于泥水平衡盾构掘进参数的PSO-BP神经网络掘进地层识别模型研究

扫码查看
为解决泥水平衡盾构机在掘进时无法准确地实时识别掘进地层的问题,以珠三角水资源配置工程为例,研究泥水平衡盾构机的盾构推力、掘进速度、刀盘转速、刀盘扭矩在不同地层下的变化规律,提出基于掘进参数的PSO-BP神经网络掘进地层识别方法,建立盾构推力、掘进速度、刀盘转速、刀盘扭矩 4 种掘进参数为输入集,地层编码为输出集的地层识别模型.工程数据的验证结果表明,该模型在珠三角水资源配置工程数据集上的掘进地层的识别准确率达 99.07%,PSO-BP 神经网络算法的识别准确率明显高于 BP、RF、RBF、CNN等机械学习算法.
Identification of Tunneling Strata with PSO-BP Neural Network Based on SPB Tunneling Parameters
To address the issue of inaccurate real-time identification of tunneling strata by slurry pressure balance shield,this study focused on the Pearl River Delta water resource allocation project.The variations of tunnelling parame-ters such as shield thrust,cutterhead torque,tunneling speed,and cutterhead rotation speed in different strata were ana-lyzed.The method of strata identification based on PSO-BP neural network tunneling parameters was proposed.The strata identification model was established with four tunneling parameters(shield thrust,cutterhead torque,tunneling speed,and cutterhead rotation speed)as input features and strata code as the output set.The model was validated using engineering data.The results demonstrate that the model achieves an identification accuracy of 99.07% on the tunneling layers of the Pearl River Delta water resource allocation project dataset.The identification accuracy of the PSO-BP neural network algorithm significantly outperforms other machine learning algorithms such as BP,RF,RBF,and CNN.

slurry pressure balance shieldtunneling parametersstrata identificationPSO-BP neural network

陈志鼎、李小龙、李广聪、万山涛、董亿

展开 >

三峡大学水电工程施工与管理湖北省重点实验室, 湖北 宜昌 443002

三峡大学水利与环境学院, 湖北 宜昌 443002

泥水平衡盾构机 掘进参数 地层识别 PSO-BP神经网络

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 12