首页|基于信号残差修正与PSO-RVM的混凝土拱坝位移组合预测模型

基于信号残差修正与PSO-RVM的混凝土拱坝位移组合预测模型

扫码查看
传统的混凝土拱坝位移预测模型仅考虑各类影响因子对预测结果的影响,未充分挖掘残差序列中的有效信息.为此,首先运用关联向量机(RVM)结合粒子群(PSO)算法建立拱坝位移预测的 PSO-RVM模型;然后采用奇异谱分析(SSA)对残差序列进行分解,并根据奇异值的累计贡献率筛选分量进行重构;其次利用随机森林算法(RF)对重构序列进行预测,得到残差序列的修正值;最后将PSO-RVM模型预测值与残差序列修正值叠加,建立基于信号残差修正与PSO-RVM的混凝土拱坝位移组合预测模型PSO-RVM+.工程实例表明,奇异谱分析与随机森林算法能有效提取残差序列中的有效信息并对残差进行修正;相较于 PSO-RVM、RVM及传统的回归模型(SWR)等位移预测模型,PSO-RVM+组合预测模型的预测性能更优、适应性更强.本研究能为大坝安全监控与健康诊断提供一种新的思路.
Combined Prediction Model of Concrete Arch Dam Displacement Based on Signal Residual Correction and PSO-RVM
Traditional prediction models for displacement of concrete arch dams only consider the influence of various factors on the prediction results,without fully exploiting the valuable information within the residual sequence.There-fore,this paper proposed particle swarm optimization-relevance vector machine(PSO-RVM)model for displacement pre-diction of arch dams,which combined the RVM with the PSO.Firstly,the singular spectrum analysis(SSA)was applied to decompose the residual sequence,and the components were reconstructed based on the cumulative contribution rate of singular values.Subsequently,the random forest(RF)algorithm was employed to predict the reconstructed sequence and obtain the correction values for the residual sequence.Finally,the predicted values from the PSO-RVM model and the correction values of the residual sequence were superimposed to establish the PSO-RVM+ model,a combined prediction model for the displacement of concrete arch dams based on signal residual correction and PSO-RVM.Engineering exam-ples demonstrate that the SSA and RF algorithms are effective in extracting valuable information from the residual se-quence and correcting the residuals.Compared to the PSO-RVM,RVM,and traditional regression models(SWR),the PSO-RVM+ composite prediction model exhibits superior predictive performance and stronger adaptability.This study provides a new perspective for dam safety monitoring and health diagnosis.

concrete arch damdisplacement predictionsignal residual correctionRVMSSARF

陈泽元、徐波、储冬冬、张祜、朱震昊

展开 >

扬州大学水利科学与工程学院, 江苏 扬州 225009

江苏省水利科学研究院, 江苏 南京 210017

混凝土拱坝 位移预测 信号残差修正 关联向量机 奇异谱分析 随机森林

国家自然科学基金项目

52079120

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 8