首页|基于IPSO-DBSCAN的抽水蓄能机组状态监测数据异常检测方法

基于IPSO-DBSCAN的抽水蓄能机组状态监测数据异常检测方法

扫码查看
抽水蓄能机组状态监测数据受采集设备故障、通信设备异常等因素影响,数据集中存在部分异常数据,对后续机组健康状态评估及预测造成不利影响.为此,提出了一种基于改进粒子群优化算法和 DBSCAN 密度聚类算法的机组异常数据检测模型,模型针对粒子群算法易陷入局部最优解的问题对算法进行改进,之后引入轮廓系数作为适应度函数对DBSCAN的参数进行寻优,最后以相关系数评价异常值剔除的效果.对国内某抽水蓄能机组 2020 年 2 月初~3 月末实测导叶开度、有功功率及下机架振动数据的实例分析结果表明,所提方法能够有效检测出机组振动监测异常数据,剔除异常值后的数据相关系数得到提高,可为后续机组健康状态评估与预测奠定数据基础.
Abnormal Detection Method of Condition Monitoring Data of Pumped Storage Unit Based on IPSO-DBSCAN
The status monitoring data of pumped storage unit is affected by factors such as collection equipment fail-ures and communication equipment abnormalities,and there are some abnormal data in the dataset,which has a negative impact on the subsequent assessment and prediction of the health status of the units.Therefore,a unit anomaly data de-tection model based on improved particle swarm optimization algorithm and DBSCAN density clustering algorithm was proposed.The model improves the particle swarm optimization algorithm to address the problem of easily falling into lo-cal optima,and then introduced contour coefficient as fitness function to optimize the parameters of DBSCAN.Finally,the correlation coefficient was used to evaluate the effect of eliminating outliers.The measured guide vane opening,active power and lower frame vibration data of a domestic pumped storage unit from early February to late March 2020 were used for example analysis.The results show that the proposed method can effectively detect the abnormal data of vibra-tion monitoring,and the correlation coefficient between the data after removing the outlier is improved,which lays a data foundation for the subsequent unit health status assessment and prediction.

pumped storageoutlier detectionimproved particle swarm optimization algorithmDBSCAN

张金鹏、张孝远

展开 >

河南工业大学电气工程学院,河南 郑州 450001

抽水蓄能 异常值检测 改进粒子群优化算法 DBSCAN

国家自然科学基金项目

51409095

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 8