首页|基于SA-NSGA-Ⅱ算法的水库多目标优化调度研究

基于SA-NSGA-Ⅱ算法的水库多目标优化调度研究

扫码查看
针对带精英策略的快速非支配排序遗传算法 NSGA-Ⅱ求解多目标优化问题时存在局部搜索能力较差的缺陷,提出一种基于逐次逼近方法改进的快速非支配排序遗传算法(SA-NSGA-Ⅱ),该算法通过不断调整搜索空间来减小不可行域和支配解占比,从而增强局部搜索能力,快速逼近 Pareto 真实前沿.以平均出力最大和下游河道适宜生态流量改变度最小为目标,建立小浪底水库多目标优化调度模型,分别采用 SA-NSGA-Ⅱ和 NSGA-Ⅱ求解模型并比较优化效果.结果表明,在两种算法求解模型生成的混合 Pareto 前沿中,SA-NSGA-Ⅱ、NSGA-Ⅱ所生成的 Pareto 前沿点分别占比 80.45%、19.55%;SA-NSGA-Ⅱ、NSGA-Ⅱ生成的Pareto前沿中,分别有 86.90%、52.67%的点处于非支配地位,且 SA-NSGA-Ⅱ较 NSGA-Ⅱ的算法运算时间减少了 15.32%.因此,在相同初始条件下,SA-NSGA-Ⅱ的优化效果优于 NSGA-Ⅱ,验证了 SA-NSGA-Ⅱ在水库多目标优化调度中的适用性.
Study on Multi-objective Optimal Scheduling of Reservoirs Based on SA-NSGA-Ⅱ Algorithm
Aiming at the defect of poor local search ability of NSGA-Ⅱ,a fast non-dominated sorting genetic algo-rithm with elite strategy,in solving multi-objective optimization problems,a fast non-dominated sorting genetic algorithm based on the improvement of the successive approximation method(SA-NSGA-Ⅱ)was proposed.The algorithm reduced the ratio of infeasible domains and dominated solutions by continuously adjusting the search space,so as to enhance the local search ability and quickly approximate the true Pareto frontier.With the goals of maximum average output and the minimum change of suitable ecological flow of the downstream river,a multi-objective optimal scheduling model of Xia-olangdi Reservoir was established.The SA-NSGA-Ⅱ and NSGA-Ⅱ were used to solve the model respectively and the op-timization effects were compared.The results demonstrate that among the hybrid Pareto frontier generated by the two al-gorithms,the Pareto frontier points generated by SA-NSGA-Ⅱ and NSGA-Ⅱ account for 80.45% and 19.55% ,respec-tively.Among the Pareto frontiers generated by SA-NSGA-Ⅱ and NSGA-Ⅱ,86.90% and 52.67% of the points are in the non-dominated position,respectively,and the algorithm operation time of SA-NSGA-Ⅱ is reduced by 15.32% com-pared to NSGA-Ⅱ.Therefore,under the same initial conditions,the optimization effect of SA-NSGA-Ⅱ is better than that of NSGA-Ⅱ,which verifies the applicability of SA-NSGA-Ⅱ in multi-objective optimal operation of reservoirs.

genetic algorithmmulti-objectiveoptimal schedulingXiaolangdi Reservoir

李传利、李新杰、金祖凯、张红涛、李弘瑞、王强

展开 >

华北水利水电大学电气工程学院,河南 郑州 450045

水利部黄河下游河道与河口治理重点实验室,河南 郑州 450003

黄河水利委员会黄河水利科学研究院,河南 郑州 450003

喀什地区莫莫克水利枢纽工程建设管理局,新疆 喀什 844000

展开 >

遗传算法 多目标 优化调度 小浪底水库

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目2021年度河南省重点研发与推广专项(科技攻关)

U224323651879115U2243215212102311001

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 8