首页|权衡生态和发电目标的梯级水库强化学习模型及其应用

权衡生态和发电目标的梯级水库强化学习模型及其应用

扫码查看
为更好地发挥经济及生态效益,建立了基于强化学习算法的梯级水库优化调度模型,以周尺度小浪底天然入库流量过程为基础,探讨梯级水库发电与生态目标之间的权衡,并将该模型应用于小浪底-西霞院梯级水库中,分别探讨了不同调度方案下发电最优、生态最优和发电-生态权衡的优化调度策略.结果表明,以发电最优为目标时,梯级水库多年平均发电量比常规调度增加了 3.62%~7.92%;以生态最优为目标时,平均生态保证率比常规调度增加了 31.68%~33.66%.结果为梯级水库多目标优化调度提供了一种可行方法.
Reinforcement Learning Model and Its Application for Balancing Ecological and Power Generation Objectives of Cascaded Reservoirs
To better leverage economic and ecological benefits,a reinforced learning algorithm-based model for opti-mal scheduling of cascaded reservoirs was developed to explore the trade-off between power generation and ecological ob-jectives based on the natural inlet flow process of Xiaolangdi at the weekly scale.The model was applied to the Xiaolang-di-Xiaoxiyuan cascaded reservoirs,and the optimal scheduling strategies of power generation optimization,ecological opti-mization and power generation-ecological trade-off under different scheduling schemes were explored respectively.The re-sults show that with the goal of optimal power generation,the average annual power generation of cascade reservoirs has increased by 3.62% -7.92% compared to conventional scheduling;When targeting ecological optimization,the average ec-ological guarantee rate increases by 31.68% -33.66% compared to conventional scheduling.Thus,it provides a feasible method for multi-objective optimal scheduling of cascaded reservoirs.

multi-objective optimizationecology guarantee rateenergy productionreinforced learningXiaolangdi reservoirXixiayuan reservoir

王一聪、陈明洪

展开 >

中国农业大学水利与土木工程学院,北京 100083

多目标调度 生态保证率 发电量 强化学习 小浪底水库 西霞院水库

国家重点研发计划国家重点研发计划

2022YFC32018042016YFC0402506

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 14