首页|基于Stacking集成学习模型的苹果树逐日蒸散量模拟研究

基于Stacking集成学习模型的苹果树逐日蒸散量模拟研究

扫码查看
为准确模拟苹果树逐日蒸散量,以支持向量机(SVM)、多层感知机(MLP)、随机森林(RF)和梯度提升决策树(GBDT)为初级学习器,以多元线性回归(MLR)为次级学习器,基于 Stacking 策略建立集成学习模型(LSM),将 LSM模型的模拟精度与 MLR、SVM、MLP、RF、GBDT 模型的模拟精度进行对比.结果表明,影响苹果树蒸散量的主要因子为日平均太阳辐射、相对湿度、风速、温度和日序数,最大互信息值分别为 0.97、0.72、0.63、0.62、0.60,表层土壤温度及土壤含水率对蒸散量的影响较小.相比于 MLR、SVM、MLP、RF、GBDT模型,LSM模型的模拟精度最高,MLR模型的模拟精度最低;使用日平均太阳辐射、相对湿度、风速、温度及日序数 5 个特征参数在准确模拟苹果树蒸散量的同时,还能降低特征的获取成本.研究结果可为苹果树逐日蒸散量的精准模拟提供有效方法.
Daily Evapotranspiration Simulation Study of Apple Trees Based on Stacking Ensemble Learning Model
In order to accurately simulate the daily evapotranspiration of apple trees,an ensemble learning model(LSM)based on the stacking strategy was established with support vector machine(SVM),multilayer perceptron(MLP),random forest(RF)and gradient boosting decision tree(GBDT)as the primary learner and multiple linear re-gression(MLR)as the secondary learner.The simulation accuracy of the LSM model was compared with that of MLR,SVM,MLP,RF and GBDT models.The results show that the main factors affecting evapotranspiration of apple trees were the daily average solar radiation,relative humidity,wind speed,temperature and daily ordinal number.The maxi-mal information coefficient values were 0.97,0.72,0.63,0.62 and 0.60.Surface soil temperature and soil moisture content had little impact on evapotranspiration.Compared with MLR,SVM,MLP,RF and GBDT models,the LSM model had the highest simulation accuracy,and the MLR model had the lowest simulation accuracy.The five characteris-tics parameters of the daily average solar radiation,relative humidity,wind speed,temperature and daily ordinal number could accurately simulate the evapotranspiration of apple trees while reducing the acquisition cost of features.This study can provide an effective method for accurate simulation of daily evapotranspiration of apple trees.

crop evapotranspirationapple treesmachine learningStacking ensemble learningsimulation accuracyinfluencing factor

王娜娜、毕远杰、何苗、郭向红、雷涛

展开 >

太原理工大学水利科学与工程学院,山西 太原 030024

作物蒸散量 苹果树 机器学习 Stacking集成学习 模拟精度 影响因子

山西省基础研究计划项目山西省水利科学技术研究与推广项目

2022030212111492022GM012

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 7