首页|基于K-means聚类和极限学习机组合算法的短期光伏功率预测

基于K-means聚类和极限学习机组合算法的短期光伏功率预测

扫码查看
考虑光伏功率的预测精度强依赖于天气模态和气候条件等因素影响,提出了基于极限学习机组合算法的短期光伏功率预测方法.首先,基于K-means聚类算法进行天气分型,分为 4 个季节下晴天、多云天气、阴雨天气共 12 组不同天气类别.其次,针对天气分型结果,基于极限学习机 ELM、遗传算法改进的极限学习机GA-ELM、鸟群算法改进的极限学习机BSA-ELM3 种算法构建光伏功率预测模型.最后,以某光伏电站数据进行所提模型验证.预测结果表明,BSA-ELM预测精度最高,12 种天气预测精度达到 90%左右,各季节中预测精度最高的天气类型均为晴天,多云天气精度高于阴雨天气精度,可为含高比例光伏并网的新型电力系统安全稳定运行提供有效数据支撑.
Short-term PV Power Prediction Based on K-means Clustering and Extreme Learning Machine Combination Algorithm
Considering that the prediction accuracy of PV power strongly depends on the influence of factors such as weather modes and climatic conditions,a short-term PV power prediction method based on an extreme learning machine combination algorithm was proposed.Firstly,the weather typing based on K-means clustering algorithm was divided into 12 different groups of weather categories of sunny,cloudy and rainy weather under four seasons.Secondly,the PV power prediction model was constructed based on three algorithms:extreme learning machine(ELM),genetic algorithm im-proved extreme learning machine(GA-ELM),and bird flock algorithm improved extreme learning machine(BSA-ELM)for weather typing results.Finally,the proposed model was validated with a PV plant data.The prediction results show that the BSA-ELM has the highest prediction accuracy,and the prediction accuracy of 12 kinds of weather reaches about 90% ,and the weather type with the highest prediction accuracy in each season is sunny,and the accuracy of cloudy weather is higher than that of rainy weather,which can provide effective data support for the safe and stable operation of the new power system containing a high proportion of grid-connected PV.

PV power predictionK-means clusteringweather typingextreme learning machine algorithmgenetic algorithmbird swarm algorithm

黄牧涛、邢芳菲、陈兴邦、卢明

展开 >

华中科技大学电气与电子工程学院,湖北 武汉 430074

华中科技大学土木与水利工程学院,湖北 武汉 430074

国网河南省电力公司电力科学研究院,河南 郑州 450052

光伏发电功率预测 K-means聚类 天气分型 极限学习机算法 遗传算法 鸟群算法

国家电网有限公司总部管理科技项目

5400-202199555A-0-5-ZN

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(2)
  • 12