首页|基于机器学习算法的滑坡土壤含水率预测方法研究

基于机器学习算法的滑坡土壤含水率预测方法研究

扫码查看
土壤含水率是影响坡体稳定性的决定因素之一.针对滑坡体内部土壤水分信息难以准确感知的问题,建立了一种基于机器学习算法树突神经网络的土壤含水率预测模型(DDNN),通过分析土壤水分垂向变化特征和数据相关性确定关键的影响因子后,将水分预测模型 DDNN 与 GA-BP、RF、RBFNN 三种算法进行对比试验.发现DDNN预测模型的拟合优度R2 最高为 0.998,均方根误差和平均绝对误差均最小,分别为0.091、0.059,其预测精度明显高于其他三种算法.并采用关系谱探究了相关影响因素对土壤含水率的敏感程度.结果表明,敏感度由高到低依次为气温、降水、初始水分、风速、地温,研究结果可为滑坡体稳定性分析提供技术方法支撑.
Research on Prediction Method of Landslide Soil Moisture Content Based on Machine Learning Algorithm
Soil moisture content is one of the decisive factors affecting slope stability.It is difficult to accurately per-ceive the soil moisture information inside the landslide.A soil moisture content prediction model(DDNN)based on ma-chine learning algorithm dendritic neural network was established.After determining the key influencing factors by analy-zing the vertical variation characteristics of soil moisture and data correlation,the water prediction model was compared with GA-BP,RF and RBFNN algorithms.The results show that the goodness of fit R2 of the DDNN prediction model was 0.998,and the root mean square error and mean absolute error were the smallest,which were 0.091 and 0.059,re-spectively.The prediction accuracy was significantly higher than the other three algorithms.The relationship spectrum was used to explore the sensitivity of related influencing factors to soil moisture content.The results show that the sensi-tivity from high to low is temperature,precipitation,initial moisture,wind speed and ground temperature.The research results can provide technical support for the stability analysis of landslide.

machine learning algorithmsdendritic neural networklandslidesoil moisture predictioncorrelationsensitivity

杨小平、段生锐、蒋力、刘光辉

展开 >

桂林理工大学信息科学与工程学院, 广西 桂林 541004

桂林理工大学广西嵌入式技术与智能系统重点实验室, 广西 桂林 541004

广西壮族自治区地质环境监测站, 广西 南宁 530029

桂林赛普电子科技有限公司, 广西 桂林 541004

展开 >

机器学习算法 树突神经网络 滑坡体 土壤含水率预测 相关性 敏感性

国家高新技术研发计划(863计划)广西壮族自治区科技攻关项目广西壮族自治区南宁市青秀区科技局科技计划

2013AA12210504AC1638012RZ19100041

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(3)
  • 9