首页|大岗山高拱坝表观特征分析及发展趋势预测

大岗山高拱坝表观特征分析及发展趋势预测

扫码查看
为评价大岗山水电站高拱坝运行期状态,基于(应力、温度和位移)现场监测数据,深入分析了其表观特征数据的相关性,并采取 ESN、ELM、BI-LSTM三种深度学习模型结合优化算法 SSA预测对比了其未来的发展趋势.结果表明,水位变化时,#14 坝段应力响应最为剧烈,位移与温度变化属正常范围.正垂线位移和应力的最优预测模型分别为 ELM和BI-LSTM,均方根误差分别为 0.985 和 0.061.研究结果为大坝自动化监测数据的预测提供了参考.
Apparent Characteristics Analysis and Development Trend Prediction of Dagangshan High Arch Dam
To evaluate the operation state of the high arch dam of Dagangshan Hydropower Station,based on the field monitoring data(stress,temperature,and displacement),the correlation of the apparent characteristic data was deeply analyzed,and three deep learning models(ESN,ELM,BI-LSTM)combined with the optimization algorithm SSA(Salp Swarm Algorithm)were used to make a prediction comparison.The results show that when the water level changes,the stress response of the No.14 dam section is the most severe,and the displacement and temperature changes are within the normal range.The optimal prediction models for positive vertical displacement and stress are ELM and BI-LSTM.The root means square errors were 0.985 and 0.061,respectively.The study can provide reference for prediction of dam auto-mation monitoring data.

high arch damapparent characteristicdeep learningpredictionoptimization algorithm

彭涛、郭家成、王钰睫、袁兆虎

展开 >

国能大渡河流域水电开发有限公司, 四川 成都 610041

大渡河公司本部/企业管理与法律事务部, 四川 乐山 614000

高拱坝 表观特征 深度学习 预测 优化算法

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(3)
  • 8