首页|基于神经网络模型胶凝砂砾石渗透性能研究

基于神经网络模型胶凝砂砾石渗透性能研究

扫码查看
以胶凝砂砾石(CSG)为例,通过 119 组试验试块进行渗透试验测定,形成了CSG的 28 天渗透系数的数据集.数据集中有 119 组渗透系数数据,其中最小值为 3.41×10-5 cm/s,最大值为 27.812×10-5 cm/s.数据主要集中在 3×10-5~22×10-5 cm/s范围内,约占总样本数的 97%.根据箱线图确定去除异常值并通过偏态峰度检验、K-S检验和分布图结果,可认为CSG材料的渗透系数数据服从正态分布规律.在此基础上,使用BP和 GABP神经网络模型进行渗透系数预测,并对两种模型的预测精度进行比较.结果表明,GABP估计模型的精度略优于BP模型.CSG渗透系数实际值与预测值吻合较好,说明预测效果较好.
Study on the Infiltration Performance of Colluvial Gravel Based on Neural Network Model
In this paper,the 28-day permeability coefficient data set of CSG was formed by the experimental determi-nation of permeability through 119 sets of experimental test blocks with cemented sand gravel(CSG)as the research ob-ject.There are 119 sets of permeability coefficient data in the dataset,of which the minimum value is 3.41×10-5cm/s and the maximum value is 27.812×10-5cm/s.The data are mainly concentrated in the range of 3×10-5 to 22×10-5 cm/s,accounting for about 97%of the total number of samples.Based on the box line plot to remove the outliers and by the results of the skew kurtosis test,K-S test,and distribution diagram,it can be concluded that the permeability coeffi-cient data of CSG materials obey the law of normal distribution.Based on this,the BP and GABP neural network models were used to predict the permeability coefficients,and the prediction accuracy of the two models was compared.The re-sults show that the accuracy of the GABP model was slightly better than that of the BP model.The actual values of CSG permeability coefficients agreed better with the predicted values,which indicated that the prediction was better.

colluvial gravelpermeability coefficientbox-line plotnormal distributionneural networks

韩立炜、陈明

展开 >

华北水利水电大学水利学院, 河南 郑州 450046

胶凝砂砾石 渗透系数 箱线图 正态分布 神经网络

国家重点研发计划国家自然科学基金项目

2018YFC040680351509091

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(3)
  • 14