首页|基于GA-SVR的管网异常漏损检测

基于GA-SVR的管网异常漏损检测

扫码查看
为快速、准确定位供水管网异常漏损所在位置,减少水资源流失和降低漏损检测成本,以 A 村为例,在区域管网分区计量的基础上,采用遗传算法(GA)优化支持向量回归(SVR)模型,建立基于 GA-SVR 的水量预测模型,进而分析模型预测水量与实际水量之间的差异性,从而识别区域管网异常漏损情况,构建区域管网异常漏损检测模型.结果显示,基于 GA-SVR的水量预测模型,其测试期的平均纳什效率系数为 0.891;管网异常漏损识别准确率为 91.7%.结果表明,构建的 GA-SVR管网异常漏损检测模型,其异常漏损识别程度较高,实际应用效果良好,结合区域管网分区计量方法,可实现漏损的快速识别和定位.
Abnormal Leakage Detection of Pipe Network Based on GA-SVR
In order to quickly and accurately locate the location of abnormal leakage of water supply pipe network,re-duce loss of water resources and pipe network maintenance cost,taking A village for an example,on the basis of regional pipe network zoning metering,a genetic algorithm(GA)was used to optimize a support vector regression(SVR)model.And then a water volume prediction model based on GA-SVR was established to analyze the difference between predicted and actual water volumes.The abnormal leakage in the regional network was identified and a model for detecting abnor-mal leaks in the regional network was established.The results show that the average Nash efficiency coefficient(NSE)of the water quantity prediction model based on GA-SVR is 0.891.The identification accuracy of abnormal leakage of pipe network is 91.7%.The proposed GA-SVR pipe network abnormal leakage detection model has a high degree of abnormal leakage identification and good practical application effect.Combined with the regional pipe network zoning metering method,it can achieve rapid identification and positioning of leakage.

leakage detectionsupport vector regressiongenetic algorithmwater demand forecasting

杨辉斌、郑德仁、王贺龙、温进化、苏龙强、李进兴

展开 >

浙江省水利河口研究院(浙江省海洋规划设计研究院), 浙江 杭州 310020

平阳县水利局, 浙江 温州 325499

漏损检测 支持向量回归 遗传算法 水量预测

浙江省水利厅科技计划项目浙江省水利厅科技计划项目浙江省水利厅科技计划项目

RC2114RB2106RB2020

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(3)
  • 8