首页|基于LCD-SSA-BiLSTM模型的月径流预测研究

基于LCD-SSA-BiLSTM模型的月径流预测研究

Research on Monthly Runoff Prediction Method Based on LCD-SSA-BiLSTM Model

扫码查看
径流预测在水资源优化配置和防汛抗旱方面发挥着重要作用.但径流序列非平稳会导致预测误差及峰值预测误差较大,因此提出了基于局部特征尺度分解(LCD)、麻雀搜索算法(SSA)和双向长短期记忆神经网络(BiLSTM)的组合预测模型(LCD-SSA-BiLSTM),以提高非平稳径流序列的预测精度.以汾河上游 4 个站点(汾河水库站、上静游站、兰村站和寨上站)为研究对象开展月径流序列预测研究,采用纳什效率系数、平均绝对误差、均方根误差、合格率 4 个评价指标对预测结果进行定量评价.结果表明,LCD-SSA-BiLSTM模型的平均绝对误差为 10.346×104~124.629×104 m3,均方根误差为 19.416×104~191.284×104 m3,纳什效率系数为 0.975~0.988,4 个水文站的合格率均在 90%及以上,预测精度为甲级,与单一BiLSTM、EMD-BiL-STM、LCD-BiLSTM及 EMD-SSA-BiLSTM模型相比预测效果更好,因此 LCD-SSA-BiLSTM模型是预测非平稳月径流序列的有效方法.
Runoff prediction plays an important role in the optimal allocation of water resources and flood control and drought relief.To solve the problem of large prediction errors caused by non-smoothness and extreme values of runoff se-ries and improve the prediction accuracy,this paper proposes a combined prediction model(LCD-SSA-BiLSTM)based on local characteristic-scale decomposition(LCD),sparrow search algorithm(SSA)and bi-directional long short-term mem-ory(BiLSTM)to study the monthly runoff series of four stations in the upper reaches of Fenhe River(Fenhe Reservoir Station,Shangjingyou Station,Lancun Station and Zhaishang Station).Nash efficiency coefficient(NNSE),mean abso-lute error(MMAE),root mean square error(RRMSE),and qualification rate(QQR)are used to quantitatively evaluate the prediction results.Compared with the single BiLSTM model,EMD-BiLSTM model,LCD-BiLSTM model and EMD-SSA-BiLSTM model,the results show that the LCD-SSA-BiLSTM model has higher prediction accuracy with MMAE of 10.346×104-124.629×104 m3,RRMSE of 19.416×104-191.284×104m3,NNSE of 0.975-0.988,and the QQR of all four hydrological stations were 90%and above,and the prediction accuracy was grade A.Thus,the LCD-SSA-BiLSTM mod-el is an effective method to predict non-stationary monthly runoff series.

upper reaches of the Fenhe RiverBiLSTM modelLCDmonthly runoff prediction

任智晶、赵雪花、郭秋岑、付兴涛

展开 >

太原理工大学水利科学与工程学院,山西 太原 030024

汾河上游 BiLSTM模型 LCD 月径流预测

国家自然科学基金山西省科技创新人才团队专项山西省基础研究计划山西省水利科学技术研究与推广项目

522790202022040510020272022030212210502023ZF15

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(4)
  • 8