首页|基于IMF-MFDE和GRU的水电机组故障诊断

基于IMF-MFDE和GRU的水电机组故障诊断

扫码查看
针对水电机组振动信号非平稳、非线性及强噪声的特点,提出了一种 IMF多尺度波动散布熵(MFDE)结合门控循环单元(GRU)的故障诊断方法.首先,采用跳蛛优化算法(JSOA)寻找变分模态分解(VMD)最优参数,达到振动信号最佳分解降噪效果;其次,对分解得到的本征模态函数(IMF)进行重构,计算有效 IMF的多尺度波动散布熵(MFDE)作为故障特征向量;最后,将特征向量输入 GRU构建水电机组故障识别器.所提方法对实际水电站机组故障样本数据的故障识别率达 97.83%,验证了该方法的有效性.
Fault Diagnosis of Hydroelectric Units Based on IMF-MFDE and GRU
In response to the characteristics of non-stationary,nonlinearity,and strong noise in the vibration signals of hydroelectric units,a fault diagnosis method combining IMF multi-scale fluctuation dispersion entropy(MFDE)and gated cyclic unit(GRU)is proposed.Firstly,the jumping spider optimization algorithm(JSOA)is used to optimize the parameters of variational mode decomposition(VMD)for achieving the optimal decomposition and noise reduction effect of vibration signals.Secondly,the eigenmode function(IMF)obtained from the decomposition and noise reduction is re-constructed,and the multi-scale fluctuation dispersion entropy(MFDE)of the effective IMF is calculated as the fault fea-ture vector.Finally,a fault identifier for hydroelectric units is established by choosing feature vectors as the input of GRU.Taking the actual fault sample data of hydroelectric power plant units as an example,the fault recognition rate reached 97.83%,verifying the effectiveness of the proposed method.

vibration signal of hydroelectric unitfault diagnosisJSOAVMDMFDE

朱文鑫、王淑青

展开 >

湖北工业大学电气与电子工程学院,湖北 武汉 430068

水电机组振动信号 故障诊断 跳蛛优化算法 变分模态分解 多尺度波动散布熵

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(4)
  • 7