首页|基于径流特性分解的月径流集成预测模型研究

基于径流特性分解的月径流集成预测模型研究

扫码查看
揭示混沌径流序列中的规律特性可使预测径流的可解释性、精度大幅提升.针对中长期径流序列的周期性、趋势性特征,收集洪泽湖流域吴家渡站 1959~2019 年实测月径流资料,提取径流周期成分和趋势成分,依据各成分的径流特性,选取契合物理特性规律的极限梯度下降(XGBoost)预测模型进行趋势成分预测,选择善于捕捉混沌规律的长短期记忆神经网络(LSTM)进行残差成分预测,构建了一种基于径流特性分解的XGBoost-LSTM集成预测模型,采用该模型对洪泽湖流域吴家渡站月径流序列进行预测,并将预测结果与XGBoost、LSTM、随机森林、BP等单一预测模型进行比较.结果表明,基于特性成分提取的 XGBoost-LSTM集成模型的预测精度高于单一径流预测模型,能够利用径流序列规律特性,充分发掘预测模型优势,有效提升径流预测精度.
Integrated Monthly Runoff Prediction Model Based on Runoff Characteristic Decomposition
Revealing the regular characteristics in the chaotic runoff sequence significantly enhances the interpretabili-ty and accuracy of predicting runoff.In addressing the periodic and trend features of medium to long-term runoff se-quences,the observed monthly runoff data from the Wujiadu station in the Hongze Lake basin were collected during the years 1959 to 2019.Runoff periodic components and trend components were extracted.Based on the runoff characteristics of each component,the Extreme Gradient Boosting(XGBoost)prediction model,aligning with the rules of physical char-acteristics,was chosen for trend component prediction.The Long Short-Term Memory neural network(LSTM),known for its proficiency in capturing chaotic patterns,was selected for residual component prediction.A prediction model,in-tegrating XGBoost and LSTM and based on runoff characteristic decomposition,was constructed.This model was em-ployed to forecast monthly runoff sequences at the Wujiadu station in the Hongze Lake basin.The predicted results were compared with single prediction models such as XGBoost,LSTM,Random Forest,and BP.The results indicate that the predictive accuracy of the XGBoost-LSTM ensemble model,based on characteristic component extraction,surpasses that of single runoff prediction models.It can utilize the regular characteristics of runoff sequences,fully exploit the advanta-ges of the prediction model,and effectively improve the accuracy of runoff prediction.

runoff characteristic decompositionXGBoostLSTMintegration modelmid-long term runoff forecasting

万锦、马彪、刘为锋

展开 >

河海大学水文水资源学院,江苏 南京 210098

长江勘测规划设计研究有限责任公司,湖北 武汉 430010

水利部水利水电规划设计总院,北京 100120

径流特性分解 梯度提升树 长短期记忆人工神经网络 集成模型 中长期径流预测

国家重点研发计划长江勘测规划设计研究有限责任公司自主创新项目中国博士后科学基金

2022YFC3202300CX2020Z022021M702313

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(5)
  • 8