首页|基于BP神经网络的高密度电法在水库清淤扩容坝后排泥区围堰探测中的应用

基于BP神经网络的高密度电法在水库清淤扩容坝后排泥区围堰探测中的应用

扫码查看
高密度电法具有采集数据量大、效率高、反演信息丰富等特点,在水库大坝病险隐患探测领域得到广泛应用.目前,使用基于最小二乘法的反演容易受地电数据局部极值影响,使得探测到的病害位置和规模不准确.对此,通过建立不同参数值、形态大小及位置分布的异常体正演模型,将模型数据作为训练样本,以此构建基于BP神经网络的高密度电法反演模型;将训练完成的反演模型应用于水库清淤扩容坝后排泥区围堰的高密度电法探测结果分析中.结果表明,所提方法能够减小局部电流极值引起的屏蔽作用,缩小隐患排查范围,提高了高密度电法受高阻屏蔽影响下分辨隐患的准确性和反演精度,可对物探资料作出更为精确的解释.
Application of High Density Electrical Method Based on BP Neural Network in Detection of Desilting Cofferdam in Reservoir
High density electrical method has the characteristics of large data collection,high efficiency and abundant inversion information,and has been widely used in the field of reservoir dam disease detection.At present,the inversion based on least square method is easy to be affected by the local extreme value of geo-electric data,which makes the detec-ted location and scale of the disease inaccurate.In view of this situation,this paper establishes the forward modeling mod-el of abnormal body with different parameter values,shape size and location distribution,and takes the model data as training samples to build the high-density electrical inversion model based on BP neural network.The trained inversion model was applied to the analysis of high-density electrical detection results of the cofferdam in the back row of the dred-ging and expansion dam of Reservoir.The results show that the proposed method can reduce the shielding effect caused by local current extremum,narrow the scope of hidden trouble detection,improve the accuracy of hidden trouble resolu-tion and inversion accuracy of high-density electrical method under the influence of high resistance shielding,and make more accurate interpretation of geophysical data.

high density electrical methodBP neural networkinversion modeldesilting cofferdamhazard detection

张喆、马福恒、霍吉祥

展开 >

南京水利科学研究院,江苏 南京 210029

河海大学水利水电学院,江苏 南京 210098

水利部大坝安全管理中心,江苏 南京 210029

高密度电法 BP神经网络 反演模型 清淤围堰 隐患探测

黄河水科学研究联合基金重点支持项目国家重点研发计划

U22432442019YFC1510802

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(5)
  • 13