首页|基于EMD-LSTM模型的水轮机组实测摆度信号预测方法研究

基于EMD-LSTM模型的水轮机组实测摆度信号预测方法研究

扫码查看
水电机组的运行状态直接影响电站及电网的安全稳定,预测机组监测的振动信号有助于改善故障诊断的缺陷.为此,将经验模态分解(EMD)和神经网络模型相结合,提出一种基于 EMD-LSTM的水轮机组摆度信号预测模型,将该模型应用于国内某水电站的机组摆度信号预测中,并与 LSTM、GA-BP和 EMD-GABP模型预测结果进行比较.结果表明,该模型在机组摆度信号的预测方面表现出较高的精度,且优于其他模型.
Research on Prediction Method of Measured Swing Signal of Hydraulic Turbine Unit Based on EMD-LSTM Model
The operating condition of hydropower units is greatly related to the safety and stability of power stations and grids.The prediction of swing signals from unit monitoring can improve the defect of fault diagnosis.So,a combina-tion of empirical modal decomposition(EMD)and neural network model was used to put forward an EMD-LSTM-based model for predicting the swing signal of a hydropower station.The proposed model was applied to predict the swing sig-nal of a hydropower station in China,and the results were compared with those of LSTM,GA-BP and EMD-GABP mod-els.The results show that the model exhibits high accuracy in predicting the unit swing signal,outperforming other models.

hydraulic turbine setsswing signalempirical modal decompositionlong and short term memory neural networksprediction accuracy

吴康平、周建旭、潘伟峰、丁钶铖祺

展开 >

河海大学水利水电学院,江苏 南京 210098

国网电力科学研究院南瑞集团有限公司,江苏 南京 211106

河海大学电气与动力工程学院,江苏 南京 211100

水轮机组 摆度信号 经验模态分解 长短时记忆神经网络 预测精度

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(5)
  • 10