首页|多种机器学习方法在岩质类型快速判别中的可靠性分析

多种机器学习方法在岩质类型快速判别中的可靠性分析

扫码查看
针对复杂地质条件下水利水电工程中采用传统钻探和试验方法获取岩体强度成本高、耗时长等问题,开创性将机器学习方法引入岩质类型判别中,实现对复合定向钻探岩质类型的快速判别,为地下工程围岩类别的快速划分提供支撑.依托水利水电工程超深复合定向钻关键技术研究及应用项目,结合已有地质资料,采用 10 种机器学习分类算法对复合定向钻钻进参数进行岩质类型判别,并详细对比分析模型判别效果.结果表明,RF、AdaBoost、CatBoost、KNN、SVM、ExtraTree 表现较好,其中 AdaBoost 表现最佳;验证了机器学习方法在岩质类型判别上的可行性与可靠性,为后续算法选择优化提供了指导.
Reliability Analysis of Multiple Machine Learning Methods for Rapid Discrimination of Rock Types
In response to the high cost and long time consumption of traditional drilling and testing methods for obtai-ning rock mass strength in complex geological conditions in water conservancy and hydropower engineering,machine learning methods have been introduced into rock type discrimination to achieve rapid identification of composite directional drilling rock types,which provides support for the rapid classification of surrounding rock types in underground engineer-ing.Based on the key technology research and application project of ultra-deep composite directional drilling in water con-servancy and hydropower engineering,combined with the existing geological data,10 machine learning classification algo-rithms are used to distinguish the rock type of composite directional drilling parameters,and the discrimination effect of the model is compared and analyzed in detail.The results show that the RF,AdaBoost,CatBoost,KNN,SVM,and Ex-traTree perform well,with AdaBoost performing the best;The feasibility and reliability of machine learning methods in rock type discrimination have been verified,providing guidance for subsequent algorithm selection and optimization.

machine learningcomposite directional drillingdrilling parametersrock typereliability

汪长重、韩旭、赵鑫、项洋、于起超

展开 >

长江岩土工程有限公司,湖北 武汉 430014

国家大坝安全工程技术研究中心,湖北 武汉 430010

水利部水网工程与调度重点实验室,湖北 武汉 430014

机器学习 复合定向钻 钻进参数 岩质类型 可靠性

长江岩土工程有限公司自主科研项目水利部水网工程与调度重点实验室开放研究基金项目

KCZC0959CX2023Z02-1

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(6)
  • 5