首页|基于VMD-WT-CNN与注意力机制的水电机组故障诊断

基于VMD-WT-CNN与注意力机制的水电机组故障诊断

扫码查看
水电机组故障诊断依赖于振动监测信号,但信号中存在的噪声会干扰诊断模型对有效特征的提取,降低模型精度.对此,提出一种联合变分模态分解和小波阈值降噪的水电机组故障诊断方法.首先对水电机组振动监测信号进行变分模态分解,得到若干低、中、高频分量.其次,对高频分量进行小波变换并舍弃小波系数低于设置阈值的部分,中低频分量保留.最后,构建基于注意力机制的多通道深度卷积神经网络模型,将分量作为各通道的输入信号,实现水电机组的状态识别.以水电机组实测振动信号作为样本,设计多组对比试验,结果表明该方法可有效滤除水电机组振动监测信号中的噪声,提高诊断模型的识别准确率.
Fault Diagnosis of Hydropower Unit Based on VMD-WT-CNN and Attention Mechanism
The fault diagnosis of hydropower unit depends on the vibration monitoring signal,but the noise in the sig-nal will interfere with the extraction of effective features and reduce the accuracy of the model.In this paper,a fault diag-nosis method of hydropower unit based on variational mode decomposition and wavelet threshold denoising is proposed.Firstly,the vibration monitoring signal of hydropower unit is decomposed by variational mode to obtain the low,medium and high frequency components.Secondly,wavelet transform is carried out on the high-frequency component and the part whose wavelet coefficient is lower than the set threshold is discarded,and the middle and low frequency component is re-tained.Finally,a multi-channel deep convolutional neural network model based on attention mechanism is established,and the above components are taken as input signals of each channel to realize state recognition of hydropower units.The experimental results show that this method can effectively filter out the noise in the vibration monitoring signals of hydro-power units and improve the recognition accuracy of the diagnostic model.

hydropower unitfault diagnosisvariational mode decompositionwavelet decompositiondeep convolu-tional neural networksattention mechanism

姬联涛、荆岫岩、周迪、王璞、刘昊、何鸿翔、李超顺

展开 >

中国电力科学研究院有限公司,江苏 南京 210003

国家电网公司,北京 100031

华中科技大学土木与水利工程学院,湖北 武汉 430074

国网湖南省电力有限公司,湖南 长沙 410004

展开 >

水电机组 故障诊断 变分模态分解 小波分解 深度卷积神经网络 注意力机制

国家电网有限公司科技项目

5500-202155136A-0-0-00

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(6)
  • 5