首页|基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取

基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取

扫码查看
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别.基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比.结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值.
Vibration Signal Feature Extraction of Hydropower Unit Based on Wavelet Packet Decomposition and CEEMDAN Energy Entropy
Aiming at the problems of non-stationary nonlinear vibration signal of hydropower unit with excessive noise signal,this paper proposes a feature extraction method based on the combination of adaptive noise complete empirical mode decomposition(CEEMDAN)and energy entropy.Firstly,the collected vibration signal was de-noised by wavelet packet decomposition,and the de-noised signal was decomposed by CEEMDAN.Then the effective intrinsic mode func-tion(IMF)was screened by correlation coefficient method,and the energy entropy of these IMF components was calcu-lated to construct the eigenvector set,which was finally input into the Marine Predator optimization support vector ma-chine(MPA-SVM)for pattern recognition.By using the simulated signal and the measured signal,the proposed method was compared with other methods.The experimental results show that the feature extraction method based on wavelet packet decomposition and CEEMDAN energy entropy can accurately extract features and effectively distinguish different states of units,which provides application value for engineering field.

hydropower unitvibration signalwavelet packet decompositionadaptive noise complete empirical mode decompositionenergy entropyfeature extraction

王淑青、罗平章、胡文庆、柯洋洋、张家豪

展开 >

湖北工业大学电气与电子工程学院,湖北 武汉 430068

武汉大学动力与机械学院,湖北 武汉 430072

水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取

国家自然科学基金项目

51979204

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(6)