首页|集合卡尔曼滤波与随机森林算法在异源遥感降水数据同化融合中的应用

集合卡尔曼滤波与随机森林算法在异源遥感降水数据同化融合中的应用

扫码查看
为减小异源遥感降水产品的非均质误差,提出集合卡尔曼滤波(EnKF)联合随机森林(RF)的数据同化融合算法,选取长江流域5种遥感降水产品(ERA5、TerraClimate、GPM、TRMM和PERSIANN-CDR),在分析星地降水数据一致性的基础上,进行EnKF-RF数据同化与融合处理,并利用独立气象站点评估其精度.结果表明,异源产品在长江流域降水量捕捉精度为 TRMM>GPM>TerraClimate>PERSIANN-CDR>ERA5;各产品经EnKF同化后的精度纳什效率系数NNSE增至0.93~0.96,均方根误差RRMSE 降至89.48~176.03 mm,较未同化前的NNSE提升11.46%~22.34%、RRMSE减小96.35%~122.60%;RF融合进一步改进了单一源降水产品可靠性,融合后产品精度NNSE达0.99、RRMSE 为43.56 mm;异源降水数据的EnKF-RF同化融合策略减少了单一源降水产品的误差,在长江流域乃至全球尺度具有较大应用潜力.
Application of Ensemble Kalman Filter and Random Forest Algorithm in Assimilation and Fusion of Heterogeneous Remote Sensing Precipitation Data
To minimize the non-homogeneous error of heterology remote sensing precipitation products,this paper develops the data assimilation and fusion algorithm of Ensemble Kalman Filter(EnKF)combined with spatial Random Forest(RF).Five representative satellite remote sensing precipitation products in the Yangtze River Basin(ERA5,Ter-raClimate,GPM,TRMM,and PERSIANN-CDR)were chosen to carry out assimilation and fusion process using EnKF-RF on the basis of analyzing the consistency of star-ground precipitation data.And then the accuracy was evaluated by u-sing independent meteorological station.The results show that the accuracy of the heterogeneous products in capturing precipitation in the Yangtze River Basin ranks as TRMM>GPM>TerraClimate>PERSIANN-CDR>ERA5;The NNSE of the five precipitation products after EnKF assimilation increases to 0.93-0.96,and the root mean square error(RRMSE)decreases to 89.48-176.03 mm,which is higher 11.46%-22.34%and lower 96.35%-122.60%than that before assimila-tion;The RF fusion improved the accuracy of single-source precipitation products,and the NNSE of the fusion-generated precipitation products was 0.99,and the RRMSE was 43.56 mm.The EnKF-RF assimilation and fusion strategy for heter-ogeneous precipitation data reduced the error of single-source precipitation products,which has a large potential for appli-cation in the Yangtze River Basin and even at the global scale.

data assimilationdata fusionmulti-source heterogeneityremote sensing precipitation products

张炜、沈明星、高成、暴瑞玲

展开 >

河海大学设计研究院有限公司,江苏 南京 210098

河海大学水文水资源学院,江苏 南京 210098

数据同化 数据融合 多源异构 遥感降水产品

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(8)
  • 6