首页|基于长短时记忆网络的山区中小流域降雨径流模拟

基于长短时记忆网络的山区中小流域降雨径流模拟

扫码查看
洪水预报是流域防洪减灾的重要非工程措施之一.目前我国中小河流暴雨洪水灾害频发,但应对短历时强降雨的洪水预报能力仍不强.以安徽省东部山区中小流域为研究对象,引入长短时记忆网络建立流域降雨径流模型,探讨其在山区中小流域的洪水模拟效果.结果表明,考虑降雨输入的空间差异可提升深度学习模型降雨径流模拟预测性能,且长短时记忆网络能够取得优于传统人工神经网络的精度;长短时记忆网络模型有效建立了流域降雨与径流间的复杂非线性关系,模型在所选流域内场次洪水的峰值模拟效果较好,训练、测试集场次洪水峰值合格率均在90%以上;长短时记忆网络内部结构特征与流域水文过程具有较好的相似性,对山区中小流域暴雨洪水非线性关系拟合效果突出.
Rainfall-runoff Simulation in the Small and Medium-sized Catchments Using the Long Short-Term Memory Network
Flood forecasting is one of the important non-engineering measures for flood prevention and mitigation in river basins.Presently,heavy rainfall and flood disasters occur frequently in the small and medium-sized catchments,and the capability of flood forecasting remains limited when facing short-term rainstorm.Taking a small and medium-sized catchment in the eastern mountainous area of Anhui Province as the study site,this paper built a rainfall-runoff model u-sing the Long Short-Term Memory(LSTM)network,and the modelling performance of the LSTM model in the selected study site was explored.The results show that the selecting the stational measured rainfall as model inputs can improve its performance on rainfall-runoff modelling and prediction,and the LSTM model achieves higher precision than tradition-al artificial neural networks.Besides,the LSTM model effectively captures the complicated rainfall-runoff relationship in the selected river basin,and can achieve satisfactory performance on the flood peak simulation.For the training and tes-ting flood events,the calculated qualified rates of flood peak simulation are both over 90%.Meanwhile,the internal structural characteristics of the LSTM model have strong similarity with the hydrological process over the river basin,which contributes to a good fitting performance of the nonlinear rainfall-runoff relationship in the selected catchment.

mountainous regionlong short-term memory networksmall and medium-sized riversrainfall-runoff simulation

张锦堂、任明磊、李京兵、唐榕、钟小燕、王刚、王玉丽

展开 >

安徽省水文局,安徽 合肥 230022

中国水利水电科学研究院,北京 100038

水利部防洪抗旱减灾工程技术研究中心(水旱灾害防御中心),北京 100038

山丘区 长短时记忆网络 中小河流 降雨径流模拟

国家重点研发计划国家重点研发计划

2022YFC30064002022YFC3006403

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(8)
  • 4