首页|基于GWO-PE-VMD-ResNet组合模型的日径流预测

基于GWO-PE-VMD-ResNet组合模型的日径流预测

扫码查看
传统"分解-集成"径流预测模型存在预测效率低、忽略分量预测误差等问题,为此提出一种基于灰狼优化算法(GWO)、排列熵(PE)、变模态分解(VMD)和残差网络(ResNet)的预测日径流的组合模型(GWO-PE-VMD-ResNet).首先,构建以排列熵为适应度函数的GWO算法对VMD分解参数进行搜索,减少人为选择参数的不确定性;其次,利用选定分解参数的VMD算法将日径流数据分解为若干分量,降低径流序列的复杂性;最后,建立ResNet径流预测模型,将径流序列分量拼接并调整为符合ResNet模型输入维度的数据,对未来径流进行预测.以长江朱沱、监利和螺山等水文站点为研究对象开展径流预测,结果表明所建模型在预测精度和预测效率上均有明显优势.
Daily Runoff Prediction Based on the GWO-PE-VMD-ResNet Combined Model
The traditional decomposition-integration runoff prediction models has shortcomings of low prediction effi-ciency and neglecting component prediction errors.This study proposed a GWO-PE-VMD-ResNet coupled model for dai-ly runoff prediction based on Grey Wolf Optimization(GWO),Permutation Entropy(PE),Variable Mode Decomposi-tion(VMD),and Residual Neural Network(ResNet).Firstly,the GWO algorithm,with permutation entropy as the fit-ness function,was utilized to search for the parameters of the VMD,reducing the uncertainty associated with manual pa-rameter selection.Secondly,the VMD algorithm with selected parameters was applied to decompose daily runoff data in-to several components,reducing the complexity of runoff sequences.Finally,a ResNet runoff prediction model was es-tablished by concatenating and adjusting the runoff sequence components to match the input dimensions of the ResNet model,enabling the prediction of future runoff.This study focused on hydrological stations such as the Yangtze River at Zhutuo,Jianli,and Luoshan for runoff prediction.The results indicate a clear advantage of the proposed model in both prediction accuracy and efficiency.

grey wolf optimization algorithmvariational mode decompositionresidual networkdaily runoff predic-tion

程家波、姬厚灵、陈中举、鲍帅

展开 >

长江大学计算机科学学院,湖北 荆州 434023

灰狼优化算法 变模态分解 残差网络 日径流预测

湖北省自然科学基金项目湖北省自然科学基金项目湖北省教育厅科学技术研究项目

2024AFB8512023AFB082B2021052

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(8)
  • 3