首页|基于EMD-KPCA-LSTM的抽水蓄能机组振动预测

基于EMD-KPCA-LSTM的抽水蓄能机组振动预测

扫码查看
针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型.该模型利用EMD算法首先将振动信号进行分解,再利用KPCA筛选出关键影响因子,最后通过LSTM对特征序列进行时间动态建模,实现对抽水蓄能机组振动预测.试验结果表明,所建模型相较传统的LSTM、EMD-LSTM等预测模型具有更好的预测效果,可以更精确地预测振动信号的变化趋势.
Vibration Forecasting of Pumped Storage Units Base on EMD-KPCA-LSTM
In the vibration trend prediction of pumped storage units,the conventional prediction methods are difficult to predict accurately due to the highly nonlinear and non-stationary vibration signal time series.In this paper,a vibration prediction model of pumped storage unit is proposed,which combines empirical mode decomposition(EMD),kernel principal component analysis(KPCA)improved by principal component analysis(PCA)and long short-term memory neural network(LSTM).The model uses EMD algorithm to decompose vibration signals,and the KPCA is used to screen out the key influencing factors.Finally,the LSTM is used to carry out time-dynamic modeling of feature sequences to realize vibration prediction of pumped storage units.Compared with the traditional LSTM,EMD-LSTM and other pre-diction models,the experimental results show that this model has better prediction effect and can predict the change trend of vibration signals more accurately.

EMDKPCALSTMpumped storage unitsvibration signalforecasting

朱雯琪、冯陈、周宇轩、张陈瑞、韩昊轩

展开 >

河海大学电气与动力工程学院,江苏 南京 210098

EMD KPCA LSTM 抽水蓄能机组 振动信号 预测

国家自然科学基金青年基金项目中央高校基本科研业务费专项资金项目中国博士后科学基金面上基金项目

52209110B2202020052022M711017

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(8)
  • 4