首页|基于鹈鹕优化CNN-BiLSTM的电力负荷预测

基于鹈鹕优化CNN-BiLSTM的电力负荷预测

扫码查看
为了提高电力负荷的预测精度,基于卷积神经网络(CNN)的空间特征提取能力、双向长短时记忆(BiLSTM)网络的时序预测性能以及鹈鹕优化算法(POA)的寻优能力,提出了一种新的基于CNN、BiLSTM、POA的组合电力负荷预测模型(POA-CNN-BiLSTM).首先利用CNN提取电力负荷时间序列的特征向量,然后输入到BiLSTM网络进行双向循环训练,构建CNN-BiLSTM预测模型,并采用POA优化BiLSTM网络的隐藏层单元数、学习率和正则化系数等参数,最后输出电力负荷预测结果.将提出的模型应用于某区域电力负荷预测,结果表明,BiLSTM、LSTM模型预测精度优于最小二乘支持向量机(LSSVM)模型;BiLSTM模型预测精度优于LSTM模型;POA的寻优精度优于粒子群优化算法(PSO);CNN-LSTM、CNN-BiLSTM组合预测模型预测精度优于LSTM、BiLSTM模型;POA-CNN-BiLSTM模型预测精度优于POA-LSSVM、PSO-LSTM、POA-LSTM、POA-BiLSTM和POA-CNN-LSTM模型,能更好地追踪电力负荷的变化趋势.
Power Load Prediction Based on Pelican Optimized CNN-BiLSTM
In order to improve the accuracy of power load prediction,this paper proposes a new combined power load prediction model(POA-CNN-BiLSTM)based on the spatial feature extraction ability of convolutional neural networks(CNN),the predictive performance of bidirectional long short term memory(BiLSTM)networks in time series,and the optimization ability of the Pelican Optimization Algorithm(POA).Firstly,the feature vectors of the power load time se-ries are extracted using CNN,and then it is input into the BiLSTM network for bidirectional cyclic training to construct a CNN-BiLSTM prediction model.The POA is used to optimize the parameters of the BiLSTM network,such as the unit number of hidden layer,learning rate,and regularization coefficient.Finally,the power load prediction results are out-put.The proposed model is applied to forecast the power load in a certain arera.The results show that the prediction ac-curacy of BiLSTM and LSTM networks is better than that of LSSVM;The BiLSTM has higher prediction accuracy than LSTM networks;The optimization accuracy of POA is superior to particle swarm optimization algorithms(PSO);The prediction accuracy of CNN-LSTM and CNN-BiLSTM models is better than that of a single LSTM or BiLSTM models;The POA-CNN-BiLSTM model has the best prediction accuracy compared to the POA-LSSVM,PSO-LSTM,POA-LSTM,POA-BiLSTM and POA-CNN-LSTM models,which can better track the change trend of power load.

prediction of power loadPelican Optimization AlgorithmCNNBiLSTM

吴小涛、袁晓辉、毛玉鑫、王祥、郭乐、舒卫民

展开 >

黄冈师范学院数学与统计学院,湖北 黄冈 438000

华中科技大学 土木与水利工程学院,湖北 武汉 430074

华中科技大学 数字流域科学与技术湖北省重点实验室,湖北 武汉 430074

中国长江电力股份有限公司,湖北 宜昌 443002

展开 >

电力负荷预测 鹈鹕优化算法 卷积神经网络 双向长短时记忆网络

国家自然科学基金项目中国高校产学研创新基金湖北省教育厅科学技术研究项目中国长江电力股份有限公司资助项目

U23402112021ITA03012B20221962423020043

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(8)
  • 5