水电能源科学2024,Vol.42Issue(9) :84-87.DOI:10.20040/j.cnki.1000-7709.2024.20231202

基于随机森林算法的混凝土浇筑仓内部最高温度预测

Internal Maximum Temperature Prediction of Concrete Pouring Block Based on Random Forest Algorithm

周俊杰 樊仕文 方晨 黄耀英 刘富昌
水电能源科学2024,Vol.42Issue(9) :84-87.DOI:10.20040/j.cnki.1000-7709.2024.20231202

基于随机森林算法的混凝土浇筑仓内部最高温度预测

Internal Maximum Temperature Prediction of Concrete Pouring Block Based on Random Forest Algorithm

周俊杰 1樊仕文 1方晨 2黄耀英 2刘富昌1
扫码查看

作者信息

  • 1. 山西大同抽水蓄能有限公司,山西 大同 037400
  • 2. 三峡大学水利与环境学院,湖北 宜昌 443002
  • 折叠

摘要

为有效预测混凝土浇筑仓内部最高温度,引入随机森林算法,建立了基于随机森林算法的混凝土浇筑仓内部最高温度预测模型,结合西部某典型混凝土坝工程,收集高、低温季节浇筑仓实测温度,以冷却水管进出口水温、通水流量、浇筑仓层厚和环境气温为输入,混凝土浇筑仓内部最高温度为输出,采用所建模型进行训练和优化.实例应用结果表明,与传统BP神经网络预测模型相比,基于随机森林算法的混凝土浇筑仓内部最高温度预测模型对混凝土内部最高温度预测具有更好的效果.

Abstract

In order to effectively predict the internal maximum temperature of concrete pouring block,random forest algorithm was used to establish the prediction model of concrete pouring block.Combined with a typical concrete dam project in the west region,the measured temperature of the pouring block in high and low temperature seasons was col-lected firstly.The water temperature at the inlet and outlet of the cooling water pipe,the water flow rate,the thickness of the pouring block and the ambient temperature were taken as the input,and the maximum temperature of the concrete pouring block was taken as the output.Then,the random forest model was used for training and optimization.Compari-son of the traditional BP neural network,the example analysis shows that the random forest prediction model has better effect on prediction of internal temperature of concrete.

关键词

混凝土浇筑仓/最高温度/随机森林/温度预测/温控防裂

Key words

concrete pouring block/the highest temperature/random forest/temperature prediction/temperature control and crack prevention

引用本文复制引用

基金项目

国网新源集团有限公司科技项目(SGXY-2022-118)

出版年

2024
水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
参考文献量9
段落导航相关论文