首页|基于DBO-DA-GRU的大坝变形预测模型

基于DBO-DA-GRU的大坝变形预测模型

扫码查看
针对大坝变形数据中存在噪声干扰、常规深度学习预测模型关键信息挖掘能力较弱且难以确定最优参数等问题,首先采用变分模态分解(VMD)联合小波阈值降噪方法对监测数据进行处理;然后利用基于双重注意力机制的门控循环单元(DA-GRU)对降噪后的变形数据进行预测,并引入蜣螂优化算法(DBO)对模型参数进行寻优,从而构建了基于DBO-DA-GRU的大坝变形预测模型;最后以某拱坝实测变形数据为例,验证了DBO-DA-GRU较BP、GRU、DBO-GRU模型的预测精度更高、稳健性更好,可为大坝变形安全监控提供一定参考价值.
Dam Deformation Prediction Model Based on DBO-DA-GRU
Aiming at the problems of noise interference in the dam deformation data,weak mining ability of the key information in conventional deep learning prediction models and difficulty in determining the optimal parameters,the mo-nitoring data were processed by using variational mode decomposition(VMD)combined with wavelet thresholding noise reduction algorithm.And then the noise reduced deformation data were predicted by using dual attention-based gate re-current unit(DA-GRU).The dung beetle optimizer(DBO)was introduced to optimize the model parameters.Thus,a deformation prediction model based on DBO-DA-GRU was established.Taking the measured deformation data of an arch dam as an example,it is verified that DBO-DA-GRU has higher prediction accuracy and better robustness than BP,GRU and DBO-GRU models,which can provide certain reference value for dam deformation safety monitoring.

dung beetle optimizergated recurrent unitattention mechanismnoise reductiondam deformation

高睿颖、顾冲时、王岩博、陈立秋

展开 >

河海大学 水灾害防御全国重点实验室,江苏 南京 210098

河海大学 水利水电学院,江苏 南京 210098

蜣螂优化算法 门控循环单元 注意力机制 降噪 大坝变形

国家自然科学基金项目国家自然科学基金项目中国博士后科学基金项目

U2243223522091592023M730934

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(9)