首页|基于卡尔曼滤波与MUSIC算法的传感阵列定向方法

基于卡尔曼滤波与MUSIC算法的传感阵列定向方法

扫码查看
对局放源信号的准确测量与有效识别是局部放电检测、定位及分析的关键.受电磁传感器方向特性灵敏度局限,现有基于到达角(AOA)定位的局部放电定位方法主要运用于声音信号.为此,提出一种卡尔曼滤波算法与多信号分类器(MUSIC)算法相结合的特高频传感阵列定向方法,即首先采用卡尔曼滤波算法能够有效处理电磁幅值信号,减小信号波动性及测量误差,大大提升信号测量精度;然后针对单一传感器建立了传感器方向性的参考矩阵,对任意来波信号使用 MUSIC算法进行数据匹配,从而得到精确的来波方向;最后经过试验验证,所提算法可将传感器阵列的方向识别结果误差减小至5°以内,提升了测量精度.
Directional Identification of Sensor Arrays Based on Kalman Filter and MUSIC Algorithms
Accurate measurement and identification are crucial parts of partial discharge detection,localization,and a-nalysis.Limited by the sensitivity of electromagnetic sensor directional characteristics,the existing partial discharge lo-calization methods based on angle of arrival(AOA)localization are mainly based on sound signals.This article proposes an ultra high frequency sensing array localization method combining the Kalman filtering algorithm and MUSIC(Multiple Signal Classification).Firstly,the Kalman filtering algorithm is used for signal processing,which can effectively reduce signal fluctuations and measurement errors,and improve measurement accuracy.And then the sensor directionality refer-ence matrix for each sensor is established,and the MUSIC algorithm is used for data matching of arbitrary incoming sig-nal to obtain accurate AOA.After experimental verification,the proposed algorithm can reduce the localization error to less than 5 degrees,which effectively improves the measurement accuracy.

partial dischargedirectional identificationKalman filterMUSIC

刘东甲、陶雄俊、王安军、郑全福、罗林根

展开 >

中国南方电网有限责任公司超高压输电公司昆明局,云南 昆明 650217

上海交通大学电子信息与电气工程学院,上海 200240

局部放电 方向性 卡尔曼滤波 MUSIC

中国南方电网有限责任公司超高压输电公司科技项目

0109002023030103SJ00006

2024

水电能源科学
中国水力发电工程学会 华中科技大学 武汉国测三联水电设备有限公司

水电能源科学

CSTPCD北大核心
影响因子:0.525
ISSN:1000-7709
年,卷(期):2024.42(9)
  • 6